Skip to content

Ocean-Intelligent-Forecasting/OceanForecastBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OceanForecastBench

The repo releases the data and code for the paper:

  • OceanForecastBench: A Benchmark Dataset for Data-Driven Medium-Range Global Ocean Forecasting

Overview

Major Features
  • Deep Learning-Ready Dataset for Trainging. OceanForecastBench have compiled a comprehensive deep learning-ready dataset including diverse ocean variables necessary for medium-range global ocean forecasting.

  • Testing Method Based Observation. OceanForecastBench constructed a testing dataset by integrating multi-source observation data. A standardized model evaluation pipeline is also provided to align forecast data with discrete observation data and calculate evaluation metrics.

  • Baselines.

    • ResNet
    • SwinTransformer
    • ClimaX
    • FourCastNet
    • XiHe
    • PSY4

Datasets and Models Download

The data and pre-trained models used in the paper is available in the following links: Baidu Netdisk

Original Data Source

  1. GLORYS12
  2. ERA5
  3. GHRSST
  4. EN4
  5. GDP
  6. CMEMS L3 track

Traing Dataset

The training data files shall be organized as the following hierarchy:

├── 1.40625deg_npy
│   ├── train
│   │	├── mra5_19930101.npy
│   │	├── mra5_19930102.npy
│   │	├── ...
│   ├── val
│   │	├── mra5_20180101.npy
│   │	├── mra5_20180102.npy
│   │	├── ...
├── normalize_1.40625deg
│   ├── normalize_mean_23_1.40625deg.npz
│   ├── normalize_std_23_1.40625deg.npz
├── latlon_1.40625deg
│   ├── lat.npz

│   ├── lon.npz

The testing data files shall be organized as the following hierarchy:

Testing Dataset

├── ground_truth
│   ├── temperature_salinity
│   │   ├── EN.4.2.2.profiles.g10.2022/
│   │   │	├── EN.4.2.2.f.profiles.g10.202201.nc
│   │   │	├── EN.4.2.2.f.profiles.g10.202202.nc
│   │   │	├── ...
│   ├── current_sst
│   │   ├── drifter_6hour_qc_c35b_4db8_1f03_U1718152782438.nc
│   ├── zos
│   │   ├──  202201
│   │   │	├── dt_global_alg_phy_l3_20220101_20220701.nc
│   │   │	├── dt_global_alg_phy_l3_20220102_20220701.nc
│   │   │	├── ...
│   │   ├──  202202
│   │   │	├── dt_global_alg_phy_l3_20220201_20220701.nc
│   │   │	├── dt_global_alg_phy_l3_20220202_20220701.nc
│   │   │	├── ...

Pre-Trained Models

├── ResNet
│   ├── fct_1d.ckpt
│   ├── fct_2d.ckpt
│   ├── ...
│   ├── fct_10d.ckpt
├── SwinTransformer
│   ├── fct_1d.ckpt
│   ├── fct_2d.ckpt
│   ├── ...
│   ├── fct_10d.ckpt
├── ClimaX
│   ├── fct_1d.ckpt
│   ├── fct_2d.ckpt
│   ├── ...
│   ├── fct_10d.ckpt
├── FourCastNet
│   ├── fct_1d.ckpt
│   ├── fct_2d.ckpt
│   ├── ...
│   ├── fct_10d.ckpt

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages