Skip to content

Lessons Learned from a Unifying Empirical Study of Parameter-Efficient Transfer Learning (PETL) in Visual Recognition

Notifications You must be signed in to change notification settings

OSU-MLB/PETL_Vision

Repository files navigation

Lessons Learned from a Unifying Empirical Study of Parameter-Efficient Transfer Learning (PETL) in Visual Recognition

GitHub Repo stars GitHub forks

· Paper · Code

🔥 News and Updates

  • âś… [2024/09/25] Codebase is created.

Environment Setup

source env_setup.sh

Data Preparation

You can put all the data in a folder and pass the path to --data_path argument.

VTAB-1k

We provide two ways for preparing VTAB-1k dataset

  1. TFDS
    • Following VPT's instruction to download the data through
      TFDS
    • When you pass the data name for --data argument, add tfds_vtab before each VTAB dataset,
      e.g. tfds_vtab-cifar(num_classes=100)
    • You can find all the dataset names of the TFDS version VTAB1-k from TFDS_DATASETS in utils/global_var.py
  2. Processed Version
    • Download the processed version from here.
    • When you pass the data name for --data argument, add process_vtab, e.g. process_vtab-cifar
  • You can find all the dataset names of the processed version VTAB1-k from VTAB_DATASETS in utils/global_var.py

Both ways apply the same transforms to the dataset: Resize, ToTensor and optionally Normalize with mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225].

Robustness to Domain Shift

CIFAR100

Download when you run the code

Pretrain weights

Download the pretrained weights from the following links and put them in the pretrained_weights folder.

  1. ViT-B-Sup-21k rename it as ViT-B_16_in21k.npz
  2. ViT-B-CLIP rename it as ViT-B_16_clip.bin
  3. ViT-B-DINOV2 rename it as ViT-B_14_dinov2.pth

Running

Example commands for implemented methods:

VTAB-1K

### SSF  
CUDA_VISIBLE_DEVICES=0  python main.py --ssf --data processed_vtab-dtd  --debug  
  
### VPT  
CUDA_VISIBLE_DEVICES=0  python main.py --vpt_mode deep --vpt_num 10 --data processed_vtab-dtd  --debug  
  
### AdaptFormer  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_mlp_module adapter --ft_mlp_mode parallel --ft_mlp_ln before --adapter_bottleneck 64 --adapter_init lora_kaiming --adapter_scaler 0.1 --data processed_vtab-dtd  --debug --data_path data_folder/vtab_processed  
  
### Convpass  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_attn_module convpass --ft_attn_mode parallel --ft_attn_ln after --ft_mlp_module convpass --ft_mlp_mode parallel --ft_mlp_ln after --convpass_scaler 0.1 --data processed_vtab-dtd  --debug --optimizer adamw --data_path data_folder/vtab_processed  
  
### VPT Version (zero-init) Adapter  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_mlp_module adapter --ft_mlp_mode sequential_after --adapter_bottleneck 8 --adapter_init zero --adapter_scaler 1 --data processed_vtab-dtd  --debug --data_path data_folder/vtab_processed  
  
### lora init Pfeiffer Adapter  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_mlp_module adapter --ft_mlp_mode sequential_after --adapter_bottleneck 8 --adapter_init lora_xavier --adapter_scaler 1 --data processed_vtab-dtd  --debug --data_path data_folder/vtab_processed  
  
### random init Pfeiffer Adapter  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_mlp_module adapter --ft_mlp_mode sequential_after --adapter_bottleneck 8 --adapter_init xavier --adapter_scaler 1 --data processed_vtab-dtd  --debug --data_path data_folder/vtab_processed  
  
### random init Houlsby Adapter  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_attn_module adapter --ft_attn_mode sequential_after --ft_mlp_module adapter --ft_mlp_mode sequential_after --adapter_bottleneck 8 --adapter_init xavier --adapter_scaler 1 --data processed_vtab-dtd  --debug --data_path data_folder/vtab_processed  
  
### LoRA  
CUDA_VISIBLE_DEVICES=0  python main.py --lora_bottleneck 8 --data processed_vtab-dtd  --debug --data_path data_folder/vtab_processed  
  
### FacT TK  
CUDA_VISIBLE_DEVICES=0  python main.py --data processed_vtab-dtd  --optimizer adamw --fact_type tk --drop_path_rate 0.1 --debug --fact_dim 32 --fact_scaler 0.1 --data_path data_folder/vtab_processed  
  
### Fact TT  
CUDA_VISIBLE_DEVICES=0  python main.py --data processed_vtab-dtd  --optimizer adamw --fact_type tt --drop_path_rate 0.1 --data_path data_folder/vtab_processed  
  
### ReAdapter  
CUDA_VISIBLE_DEVICES=0  python main.py --ft_attn_module repadapter --ft_attn_mode sequential_before --ft_mlp_module repadapter --ft_mlp_mode sequential_before --repadapter_bottleneck 8 --repadapter_scaler 10 --data processed_vtab-smallnorb_azi  --optimizer adamw --debug  
  
### BitFit  
CUDA_VISIBLE_DEVICES=0  python main.py --bitfit --data processed_vtab-clevr_count  --debug --data_path data_folder/vtab_processed  
  
### VQT  
CUDA_VISIBLE_DEVICES=0  python main.py --vqt_num 10 --data_path data_folder/vtab_processed  
  
### LayerNorm  
CUDA_VISIBLE_DEVICES=0  python main.py --ln --data processed_vtab-clevr_count  --debug --data_path data_folder/vtab_processed  
  
### DiffFit  
CUDA_VISIBLE_DEVICES=0  python main.py --difffit --data processed_vtab-clevr_count  --debug --data_path data_folder/vtab_processed  
  
### Attention  
CUDA_VISIBLE_DEVICES=0  python main.py --attention_index 9 10 11 --attention_type qkv --data_path data_folder/vtab_processed  
  
### MLP  
CUDA_VISIBLE_DEVICES=0  python main.py --mlp_index 9 10 11 --mlp_type full --data_path data_folder/vtab_processed  
  
### block  
CUDA_VISIBLE_DEVICES=0  python main.py --block_index 9 10 11 --data_path data_folder/vtab_processed  
  
### full  
CUDA_VISIBLE_DEVICES=0  python main.py --full --eval_freq 2 --data_path data_folder/vtab_processed  

Tuning Code for VTAB-1K

CUDA_VISIBLE_DEVICES=0 python main_tune.py --data processed_vtab-caltech101 --default experiment/config/default_vtab_processed.yml --tune experiment/config/method/lora.yml --lrwd experiment/config/lr_wd_vtab_processed.yml  

All the config files can be found in the experiment/config folder.
The default config file is used to set the default hyperparameters for the training.
The tune config file is used to set the tunable hyperparameters for the method.
The lrwd config file is used to set the learning rate and weight decay for the training.
We provide the tuning results tune_summary.csv and final run results final_result.json in the tune_output folder. If you want to rerun the final run using the best tuning parameters, you can specify a new output name for the final run using this option --final_output_name.

To tune all methods for one VTAB-1K dataset, here is an example command:

dataset='processed_vtab-dsprites_loc'
for METHOD in lora_p_adapter repadapter rand_h_adapter adaptformer convpass fact_tk fact_tt lora difffit full linear ssf bitfit ln vpt_shallow vpt_deep
  do
    CUDA_VISIBLE_DEVICES=0 python main_tune.py --data ${dataset}  --default experiment/config/default_vtab_processed.yml --tune experiment/config/method/$METHOD.yml --lrwd experiment/config/lr_wd_vtab_processed.yml
  done

Robustness to Domain Shift

We use the CLIP ViT-B/16 model and add an FC layer as the prediction head with zero-initialized bias and initialize weights using the class label text embedded by the text encoder. Subsequently, we discard the text encoder and apply PETL methods to the visual encoder, fine-tuning only the PETL modules and the head.

The code to generate the prediction head for CLIP can be found at build_clip_zs_classifier.py.

This is an example command to run a PETL method for the 100-shot ImageNet dataset:

CUDA_VISIBLE_DEVICES=0  python main.py --data fs-imagenet --data_path data_folder/imagenet/images --warmup_lr_init 1.0e-7 --lr 0.00003 --wd 0.005 --eval_freq 1 --store_ckp --lora_bottleneck 32  --batch_size 256 --final_acc_hp --early_patience 10

This is an example command to tune a few methods for the 100-shot ImageNet dataset:

for METHOD in rand_h_adapter_64 lora_16 ssf
do
  for dataset in fs-imagenet
    do
      CUDA_VISIBLE_DEVICES=0 python main_tune.py --data ${dataset} --test_bs 2048 --bs 256  --default experiment/config/clip_fs_imagenet.yml --tune experiment/config/method-imagenet/$METHOD.yml --lrwd experiment/config/lr_wd_clip_imagenet.yml
    done
done

To evaluate the performance of fine-tuned models on OOD data, here is an example command:

for METHOD in rand_h_adapter_64 lora_16 ssf
do
  for dataset in fs-imagenet eval_imagenet-v2 eval_imagenet-r eval_imagenet-a eval_imagenet-s
    do
      CUDA_VISIBLE_DEVICES=0 python main_evaluate.py --test_data ${dataset} --bs 2048 --default experiment/config/clip_fs_imagenet.yml --tune experiment/config/method-imagenet/$METHOD.yml --data_path /research/nfs_chao_209/zheda
    done
done

When it comes to applying WiSE to PETL methods, there are two types of PETL methods. Methods that insert additional parameters to the model, such as Adapter, and methods that directly fine-tuned existing parameters, such as bitfit. For the former, we use merge_petl.py and use merge_model.py for the latter. Example commands for each type:

CUDA_VISIBLE_DEVICES=0 python merge_model.py --bs 1024  --default experiment/config/clip_fs_imagenet.yml --tune experiment/config/method-imagenet/ln.yml
CUDA_VISIBLE_DEVICES=0 python merge_petl.py --bs 1024 --default experiment/config/clip_fs_imagenet.yml --tune experiment/config/method-imagenet/fact_tk_64.yml

To get the WiSE curve plots, you can use WiSE_PETL.ipynb.

Many-shot (Full) Datasets

We use three datasets for mann-shot experiments: CIFAR100, Clevr-distance and RESISC. Here is an example command to run the PETL methods for the Clevr-distance dataset. Config files for CIFAR and RESISC can be found in the experiment/config folder.

for METHOD in rand_h_adapter_8 lora_8 fact_tk_8 
do
  for dataset in clevr
    do
      CUDA_VISIBLE_DEVICES=0 python main_tune.py --data ${dataset}  --default experiment/config/default_clevr.yml --tune experiment/config/method_clevr/$METHOD.yml --lrwd experiment/config/lr_wd_clevr.yml
    done
done

Results

We provide the tuning results tune_summary.csv, final run results final_result.json and other results for all the experiments in the tune_output folder.

To add a new method

  1. add a new module file in ./model/.
  2. add the module accordingly in block.py, mlp.py, patch_embed.py, vision_transformer.py, attention.py.
  3. add the name of the added module in TUNE_MODULES and modify get_model() in ./experiment/build_model.py accordingly.
  4. add required arguments in main.py

To add a new dataset

  1. add a new dataset file in /data/dataset.
  2. modify build_loader.py to include the new dataset.

To add a new backbone

  1. modify get_base_model() in build_model.py.

To run new hyperparameter tuning

  1. add a general config file and a learning rate and weight decay config file in ./experiment/config/.
  2. add new method config files. You can create a new folder in ./experiment/config/ for your experiment.

To collect logits and ground truth for PETL methods

Use main_collect_prediction.py.

Citation

If you use this paper/code in your research, please consider citing us:

@article{mai2024lessons,
  title={Lessons Learned from a Unifying Empirical Study of Parameter-Efficient Transfer Learning (PETL) in Visual Recognition},
  author={Mai, Zheda and Zhang, Ping and Tu, Cheng-Hao and Chen, Hong-You and Zhang, Li and Chao, Wei-Lun},
  journal={arXiv preprint arXiv:2409.16434},
  year={2024}
}

Reference: