Skip to content

Commit

Permalink
Merge pull request #8 from ONEcampaign/7-sdr-data
Browse files Browse the repository at this point in the history
7 sdr data
  • Loading branch information
lpicci96 authored Dec 12, 2024
2 parents 2e536a4 + 127056e commit e060a8f
Show file tree
Hide file tree
Showing 10 changed files with 991 additions and 46 deletions.
52 changes: 52 additions & 0 deletions src/imf_reader/sdr/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
"""Special Drawing Rights (SDR) reader module.
This module offers access to the IMF's Special Drawing Rights (SDR) data.
The SDR is an international reserve asset created by the IMF in 1969.
It is not a currency, but the holder of SDRs can exchange them for usable currencies in times of need.
Read more about SDRs at: https://www.imf.org/en/About/Factsheets/Sheets/2023/special-drawing-rights-sdr
Usage:
Import the module
```python
from imf_reader import sdr
```
Read allocations and holdings data
```python
sdr.fetch_allocations_holdings()
```
SDRs holdings and allocations are published at a monthly frequency. The function fetches the latest data available.
To retrieve SDR holdings and allocations for a specific month and year, eg April 2021, pass the year and month as a tuple
```python
sdr.fetch_allocations_holdings((2021, 4))
```
Read interest rates
```python
sdr.fetch_interest_rates()
```
Read exchange rates
```python
sdr.fetch_exchange_rates()
```
By default, the exchange rate is in USDs per 1 SDR. To get the exchange rate in SDRs per 1 USD, pass the unit basis as "USD"
```python
sdr.fetch_exchange_rates("USD")
```
"""

from imf_reader.sdr.read_interest_rate import fetch_interest_rates
from imf_reader.sdr.read_exchange_rate import fetch_exchange_rates
from imf_reader.sdr.read_announcements import fetch_allocations_holdings
103 changes: 103 additions & 0 deletions src/imf_reader/sdr/read_announcements.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
"""Module to get SDR data from the IMF website
info: https://www.imf.org/en/About/Factsheets/Sheets/2023/special-drawing-rights-sdr
"""

from functools import lru_cache
import pandas as pd
import calendar
from bs4 import BeautifulSoup
from datetime import datetime

from imf_reader.utils import make_request
from imf_reader.config import logger, NoDataError

BASE_URL = "https://www.imf.org/external/np/fin/tad/"
MAIN_PAGE_URL = "https://www.imf.org/external/np/fin/tad/extsdr1.aspx"


def read_tsv(url: str) -> pd.DataFrame:
"""Read a tsv file from a url and return a dataframe"""

try:
return pd.read_csv(url, delimiter="/t", engine="python")

except pd.errors.ParserError:
raise ValueError("SDR _data not available for this date")


def clean_df(df: pd.DataFrame) -> pd.DataFrame:
"""Clean the SDR dataframe"""

df = df.iloc[3:, 0].str.split("\t", expand=True)
df.columns = ["entity", "holdings", "allocations"]

return df.assign(
holdings=lambda d: pd.to_numeric(
d.holdings.str.replace(r"[^\d.]", "", regex=True), errors="coerce"
),
allocations=lambda d: pd.to_numeric(
d.allocations.str.replace(r"[^\d.]", "", regex=True), errors="coerce"
),
).melt(
id_vars="entity", value_vars=["holdings", "allocations"], var_name="indicator"
)


def format_date(month: int, year: int) -> str:
"""Return a date as year-month-day where day is the last day in the month"""

last_day = calendar.monthrange(year, month)[1]
return f"{year}-{month}-{last_day}"


@lru_cache
def get_holdings_and_allocations_data(year: int, month: int):
"""Get sdr allocations and holdings data for a given month and year"""

date = format_date(month, year)
url = f"{BASE_URL}extsdr2.aspx?date1key={date}&tsvflag=Y"

logger.info(f"Fetching SDR data for date: {date}")

df = read_tsv(url)
df = clean_df(df)
df["date"] = pd.to_datetime(date)

return df


@lru_cache
def get_latest_date() -> tuple[int, int]:
"""Get the latest date for which SDR data is available"""

logger.info("Fetching latest date")

response = make_request(MAIN_PAGE_URL)
soup = BeautifulSoup(response.content, "html.parser")
table = soup.find_all("table")[4]
row = table.find_all("tr")[1]

date = row.td.text.strip()
date = datetime.strptime(date, "%B %d, %Y")

# Extract the year and month as a tuple
return date.year, date.month


def fetch_allocations_holdings(date: tuple[int, int] | None = None) -> pd.DataFrame:
"""Fetch SDR holdings and allocations data for a given date
Args:
date: A tuple of year and month e.g (2024, 11). If None, the latest data announcements released are fetched
returns:
pd.DataFrame: A dataframe with the SDR data
"""

if date is None:
date = get_latest_date()

return get_holdings_and_allocations_data(*date)
121 changes: 121 additions & 0 deletions src/imf_reader/sdr/read_exchange_rate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
"""Module to read exchange rate data from the IMF's Special Drawing Rights (SDR) Valuation dataset.
Read about SDR valuation at: https://www.imf.org/external/np/fin/data/rms_sdrv.aspx
"""

import requests
import pandas as pd
import io
from functools import lru_cache
from typing import Literal

from imf_reader.config import logger


BASE_URL = "https://www.imf.org/external/np/fin/data/rms_sdrv.aspx"


def get_exchange_rates_data():
"""Read the data from the IMF website"""

data = {
"__EVENTTARGET": "lbnTSV",
}

try:
response = requests.post(BASE_URL, data=data)
response.raise_for_status()

except requests.exceptions.RequestException as e:
raise ConnectionError(f"Could not connect to {BASE_URL}. Error: {str(e)}")

try:
return pd.read_csv(
io.BytesIO(response.content), delimiter="/t", engine="python"
)

except pd.errors.ParserError as e:
raise ValueError(f"Could not parse data. Error: {str(e)}")


def preprocess_data(df: pd.DataFrame):
"""
Preprocess the input DataFrame by splitting columns and setting headers.
"""
df = df.iloc[:, 0].str.split("\t", expand=True)
df.columns = df.iloc[0]
df = df.iloc[1:].reset_index(drop=True)

# Ensure required columns are present
required_columns = ["Report date"]
for column in required_columns:
if column not in df.columns:
raise KeyError(f"Missing required column: {column}")

return df


def extract_exchange_series(df: pd.DataFrame, col_val: str):
"""
Extract the exchange rate series for the given column value.
"""
return (
df.loc[lambda d: d["Report date"] == col_val].iloc[:, 1].reset_index(drop=True)
)


def extract_dates_series(df: pd.DataFrame):
"""
Extract the dates series from the DataFrame.
"""
return (
df.dropna(subset=df.columns[3])
.iloc[:, 0]
.drop_duplicates()
.reset_index(drop=True)
)


def parse_data(df: pd.DataFrame, unit_basis: Literal["SDR", "USD"]):
"""Parse the data from the IMF website"""

# Validate unit basis
if unit_basis == "USD":
col_val = "U.S.$1.00 = SDR"
elif unit_basis == "SDR":
col_val = "SDR1 = US$"
else:
raise ValueError("unit_basis must be either 'SDR' or 'USD'")

# Preprocess dataframe and extract relevant columns
df = preprocess_data(df)
exchange_series = extract_exchange_series(df, col_val)
dates_series = extract_dates_series(df)

return pd.DataFrame(
{"date": dates_series, "exchange_rate": exchange_series}
).assign(
date=lambda d: pd.to_datetime(d.date),
exchange_rate=lambda d: pd.to_numeric(d.exchange_rate, errors="coerce"),
)


@lru_cache
def fetch_exchange_rates(unit_basis: Literal["SDR", "USD"] = "SDR") -> pd.DataFrame:
"""Fetch the historic SDR exchange rates from the IMF
The currency value of the SDR is determined by summing the values in U.S. dollars, based on market exchange rates, of a basket of major currencies (the U.S. dollar, Euro, Japanese yen, pound sterling and the Chinese renminbi). The SDR currency value is calculated daily except on IMF holidays, or whenever the IMF is closed for business, or on an ad-hoc basis to facilitate unscheduled IMF operations. The SDR valuation basket is reviewed and adjusted every five years.
Read more at: https://www.imf.org/en/About/Factsheets/Sheets/2023/special-drawing-rights-sdr
Args:
unit_basis: The unit basis for the exchange rate. Default is "SDR" i.e. 1 SDR in USD. Other option is "USD" i.e. 1 USD in SDR
Returns:
A DataFrame with the exchange rate data
"""

logger.info("Fetching exchange rate data")

df = get_exchange_rates_data()
return parse_data(df, unit_basis)
Loading

0 comments on commit e060a8f

Please sign in to comment.