-
Notifications
You must be signed in to change notification settings - Fork 1
/
DMPandSMP_FinalProject.m
441 lines (395 loc) · 13.9 KB
/
DMPandSMP_FinalProject.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
%December 2020
%Dynamic movement primitive (DMP) and SHC-based movement primitive (SMP)
%structures using simple trajectory following (no point mass).
%SMPs are based on a series of competitive Lotka-Volterra equations.
%Linked in "Visualization of Stable Heteroclinic Channel-based Movement
%Primitves". Submitted to ICRA/RA-L on October 15, 2020.
%Adjusted for Robotics II (ECSE 589) final paper submission.
close all
clear all
clc
tic
rng(1)
%TRAJECTORY CHOICES: Uncomment the relevant trajectory
% %Convex Trajectory -----
% desiredtraj = [0:.05:.5, .5*cos((pi/2):-.1:0)+.5;
% 0:.05:.5, .5*sin((pi/2):-.1:0)]';
% g = [1,0]; %goal
% %Concave Trajectory ------
% desiredtraj = [0:.05:.5, fliplr(.5*cos((-pi/2):-.1:-(pi))+1);
% 0:.05:.5, fliplr(.5*sin((-pi/2):-.1:-(pi))+.5)]';
% g = [1,0];
% %Circular Trajectory -----
% desiredtraj = [(0:.05:.5)*0, .5*cos(pi/2:.1:pi*2.6);
% 0:.05:.5, .5*sin(pi/2:.1:pi*2.6)]';
% g = [0,0];
% %Heart-Shaped Trajectory -----
% t = linspace(-pi,pi,78);
% desiredtraj = [16*sin(t).^3; 17 + 13*cos(t)- 5*cos(2*t) - 2*cos(3*t) - cos(4*t)]';
% desiredtraj = desiredtraj(2:end,:);
% g = desiredtraj(end,:);
%Elongated Heart -----
t = linspace(-1,1,50);
desiredtraj = [sin(t).*cos(t).*log10(abs(t));
(abs(t).^0.3).*sqrt(cos(t))]';
g = desiredtraj(end,:);
%SYSTEM PARAMETER INITIALIZATION
P = struct('desiredtraj',desiredtraj,'dt',0.01,'Nt',1000,'g',g);
%trajectory start, velocity at trajectory start, canonical state vector,
%size of timestep, number of timesteps, goal
y0 = [];
y0(1,:) = desiredtraj(1,:) + 0.001;
y0dot = [];
y0dot(1,:) = zeros(1,2);
x0 = 1;
bfs = 10;
sbfs = bfs;
DOF = size(desiredtraj,2);
%Spacing
sigma = linspace(log10(.3),log10(.002), bfs);
% sigma = logspace(log10(.3),log10(.002), bfs); %original
sigma(sbfs/2) = sigma(sbfs/2) + 10;
sigma(sbfs/2 - 1) = sigma(sbfs/2 - 1) + 5;
sigma(sbfs/2 + 1) = sigma(sbfs/2 + 1) + 5;
%Passing time
tau = 2*ones(1,sbfs);
% tau((sbfs/2)-2:(sbfs/2)+2) = 3;
tau(sbfs/2) = tau(sbfs/2)*2;
tau(1) = tau(1)*0.75;
tau(end) = tau(end)*0.75;
%DMP INITIALIZATION
D = struct('tau',1,'alphay',4,'betay',1,'alphax',.5,... %how fast cannonical system decays
'bfs',bfs,... %number of basis functions (psi activations)
'c',logspace(log10(1), log10(.01), bfs),... %basis function centers
'sigma',sigma,... %basis function widths
'w',zeros(DOF,bfs),...
'f',zeros(P.Nt,DOF),...
'psi',nan(P.Nt,bfs),'y',y0,'ydot',y0dot,'x',x0);
%According to Horchler paper, the steps to achieve precise desired
%sub-periods for a LV SHC cycle are:
% 1. Choose beta, nu & epsilon-hat
% 2. Solve for alpha using eq. (11), and construct rho matrix
% 3. Simulate eq. (2) to measure mean sub-periods which should
% approximately be the desired sub-periods.
% 4. Perform non-linear compensation by adjusting the noise with eq. (14).
%SMP INITIALIZATION
S = struct('tauy',1,'alphay',4,'betay',1,'tau',tau,'alpha',[],'beta',ones(1,sbfs),...
'nu',1.2*ones(1,sbfs),'bfs',sbfs,...
'rho',zeros(sbfs),...
'a0',[1;0.1;10^-9*ones(sbfs-2,1)],...
'a',[],...'ep',10^-9*ones(1,sbfs),...
'ep',10^-6*ones(1,sbfs),...
'w',zeros(DOF,bfs),...
'f',zeros(P.Nt,DOF),'y',y0,'ydot',y0dot);
[S.alpha,S.beta,S.nu] = shc_lv_params(S.tau,S.ep,S.beta,S.nu,0);
%INITIALIZE WEIGHTS
%Random
% D.w = 5-10*rand(2,D.bfs);
% S.w = 5-10*rand(2,S.bfs);
%Zero
% D.w = zeros(2,D.bfs);
% S.w = zeros(2,S.bfs);
%Scaled from trajectory
wd = P.desiredtraj(round(linspace(1,length(P.desiredtraj),D.bfs)) ,:)'...
*(D.alphay+D.betay);
ws = P.desiredtraj(round(linspace(1,length(P.desiredtraj),S.bfs)) ,:)'...
*(S.alphay+S.betay);
D.w = wd;
S.w = ws;
%BATCH LEARNING
Ntrials = 100;
desiredt = linspace(0,10,length(P.desiredtraj))';% assumes constant velocity
desiredydot = [0,0;diff(P.desiredtraj)./(diff(desiredt)*[1,1])]; % desired speed
desiredydotdot = [0,0;diff(desiredydot)./(diff(desiredt)*[1,1])];
fdesiredd = D.tau * desiredydotdot - (D.alphay * (D.betay*(P.g-P.desiredtraj) - desiredydot));
expected_x = x0*exp(-D.alphax/D.tau*desiredt);
expectedPsi = exp(ones(length(desiredt),1)*(-1./(2*D.sigma.^2)) .*(expected_x - D.c).^2);
betawd = (expected_x .* expectedPsi) \ (sum(expectedPsi,2).* fdesiredd);
errors = (expected_x .* expectedPsi)*betawd - (sum(expectedPsi,2).* fdesiredd);
S.a(1,:) = S.a0;
%Make rho matrix with "reversed direction"
S.rho = shc_lv_createcycle(S.alpha,S.beta,S.nu,-1);
index = 1;
expected_SHCas = S.a;
a = S.a(1,:);
%Run & plot for coarse approximation
'Coarse Approximation'
[dcostrand,scostrand,D,S] = Eval(D,S,P);
ShowPlot(D,S,P,wd,ws)
alldcosts = dcostrand;
allscosts = scostrand;
for t = desiredt(1): P.dt: desiredt(end)
dW = sqrt(P.dt)*randn(1,S.bfs);
da = a .* (S.alpha' - a*S.rho) *P.dt + S.ep.*dW; %tau for scaling?
a = max(min(a + da, 1), .0005); %enforcing boundaries on 'a'
if t>=desiredt(index)
index = index+1;
else
expected_SHCas(index, :) = a;
end
end
fdesiredr = S.tauy * desiredydotdot - (S.alphay *...
(S.betay*(P.g-P.desiredtraj) - desiredydot));
betaws = (expected_SHCas) \ fdesiredr;
meanerror = sum(sum(errors.^2))
S.w = betaws';
D.w = betawd';
%Run & plot after fine approximation
'Fine Approximation'
[dcost,scost,D,S] = Eval(D,S,P);
alldcosts = [alldcosts dcost];
allscosts = [allscosts scost];
ShowPlot(D,S,P,wd,ws)
pause(5)
% %Cost comparison (not necessary)
% figure(20)
% hold on
% title('All Costs')
% plot(alldcosts,'-k','Linewidth',1.5)
% plot(allscosts,'--k','Linewidth',1.5)
% legend('DMP','RMP')
% xlabel('Iterations')
% ylabel('Cost')
toc
%% Evaluate Cost
function [dcost,scost,D,S] = Eval(D,S,P,wnew)
if nargin == 4
wdmp = wnew;
wsmp = wnew;
end
if nargin == 3
wdmp = D.w;
wsmp = S.w;
end
goaltol = 0.005;
maxtime = (P.Nt+1)*P.dt;
%DMP
distance = 0;
trajpointdistancessq = Inf*ones(size(P.desiredtraj, 1), 1);
ydotdotsum = 0;
for i = 1:P.Nt
D.x(i+1,:) = D.x(i,:) + ((-D.alphax)*D.x(i,:))/D.tau*P.dt;
D.psi(i,:) = exp(-1./(2*D.sigma.^2).*((D.x(i+1,:)-D.c).^2));
D.f(i,:) = (D.psi(i,:)*wdmp') *D.x(i+1,:) /sum(D.psi(i,:));
ydotdot = (D.alphay*(D.betay*(P.g-D.y(i,:))-D.ydot(i,:))+D.f(i,:))/D.tau;
ydotdotsum = rssq(ydotdot) + ydotdotsum;
D.ydot(i+1,:) = ydotdot*P.dt + D.ydot(i,:);
D.y(i+1,:) = D.ydot(i+1,:)*P.dt+D.y(i,:);
trajpointdistancessq = min ((D.y(i+1,1) - P.desiredtraj(:,1)).^2 +...
(D.y(i+1,2) - P.desiredtraj(:,2)).^2, ...
trajpointdistancessq);
[dsquared,~] = min( (D.y(i+1,1) - P.desiredtraj(:,1)).^2 + ...
(D.y(i+1,2) - P.desiredtraj(:,2)).^2);
distance = distance + sqrt(dsquared);
end
dcost = 100*sum(sqrt((D.y(end,:)-P.g).^2)) ... %final goal error
+ sum(rssq(D.ydot,1))*P.dt ... %velocity
+ ydotdotsum*P.dt ... %acceleration
+ 1000*sum(sqrt(trajpointdistancessq)); %trajectory error
%SMP
distance = 0;
trajpointdistancessq = Inf*ones(size(P.desiredtraj, 1), 1);
ydotdotsum = 0;
for i = 1:P.Nt
dW = sqrt(P.dt)*randn(1,S.bfs);
if i == 1
da = S.a0' .* (S.alpha' - S.a0'*S.rho) *P.dt + S.ep.*dW;
S.a(i,:) = max(min(S.a0' + da, 1), 0.0005);
else
da = S.a(i-1,:) .* (S.alpha' - S.a(i-1,:)*S.rho) *P.dt + S.ep.*dW;
S.a(i,:) = max(min(S.a(i-1,:) + da, 1), .0005);
end
S.f(i,:) = (S.a(i,:)*wsmp');
ydotdot = (S.alphay*(S.betay*(P.g-S.y(i,:))-S.ydot(i,:))+S.f(i,:))/S.tauy;
ydotdotsum = rssq(ydotdot) + ydotdotsum;
S.ydot(i+1,:) = ydotdot*P.dt + S.ydot(i,:);
S.y(i+1,:) = S.ydot(i+1,:)*P.dt+S.y(i,:);
trajpointdistancessq = min ((S.y(i+1,1) - P.desiredtraj(:,1)).^2 +...
(S.y(i+1,2) - P.desiredtraj(:,2)).^2, ...
trajpointdistancessq);
[dsquared,~] = min( (S.y(i+1,1) - P.desiredtraj(:,1)).^2 + ...
(S.y(i+1,2) - P.desiredtraj(:,2)).^2);
distance = distance + sqrt(dsquared);
end
scost = 100*sum(sqrt((S.y(end,:)-P.g).^2)) ... %final goal error
+ sum(rssq(S.ydot,1))*P.dt ... %velocity
+ ydotdotsum*P.dt ... %acceleration
+ 1000*sum(sqrt(trajpointdistancessq)); %trajectory error
end
%% Plot
function ShowPlot(D,S,P,wd,ws)
psiall = nan*ones(P.Nt,length(D.sigma));
aall = nan*ones(P.Nt, S.bfs);
yalldmp = nan*ones(P.Nt,2);
yallsmp = nan*ones(P.Nt,2);
whichcolor = nan*ones(P.Nt,1);
smpcolor = whichcolor;
dmpcolor = whichcolor;
for i = 1:P.Nt
[~, dmpcolor(i)] = max( [sum( abs(D.alphay*(D.betay*(P.g-D.y(i,:))-D.ydot(i,:))).^2)*.1;
sum((abs((D.psi(i,:).*D.w) *D.x(i,:) /sum(D.psi(i,:)))').^2,2)]);
[~, smpcolor(i)] = max( [sum( abs(S.alphay*(S.betay*(P.g-S.y(i,:))-S.ydot(i,:))).^2)*.1;
sum((abs((S.a(i,:).*S.w) /sum(S.a(i,:)))').^2,2)]);
yalldmp(i,:) = D.y(i,:);
yallsmp(i,:) = S.y(i,:);
psiall(i,:) = D.psi(i,:);
aall(i,:) = S.a(i,:);
end
dmpcolorstouse = setdiff(unique(dmpcolor)-1, 0);
smpcolorstouse = setdiff(unique(smpcolor)-1, 0);
psicolors = ones(1,size(D.w,2))'*[0.7, 0.7, 0.7];
acolors = ones(1, size(S.w,2))'*[0.7, 0.7, 0.7];
psicolors(dmpcolorstouse,:) = cool(length(dmpcolorstouse));
acolors(smpcolorstouse,:) = cool(length(smpcolorstouse));
% %Choose which kernel to highlight
% k = 5;
% psicolors(k,:) = [0 0 0];
% acolors(k,:) = [0 0 0];
figure(1) %WEIGHTED KERNELS
clf(1)
figure(1)
subplot(1,2,1)
title ('DMP','Fontsize',20)
for j = 1:size(D.psi,2)
hold on
plot((1:P.Nt)*P.dt, psiall(:,j)*D.w(1,j), '-c', 'Color', psicolors(j,:))
plot((1:P.Nt)*P.dt, psiall(:,j)*D.w(2,j), '-c.', 'Color', psicolors(j,:))
end
ylabel('canonical state, {\it x}','Fontsize',20)
xlabel('time (s)','Fontsize',20)
subplot(1,2,2)
title('SMP','Fontsize',20)
for j = 1:size(S.a,2)
hold on
plot((1:P.Nt)*P.dt, aall(:,j)*S.w(1,j), '-c', 'Color', acolors(j,:))
plot((1:P.Nt)*P.dt, aall(:,j)*S.w(2,j), '-c.', 'Color', acolors(j,:))
end
plot((1:P.Nt)*P.dt,S.f(:,1),'-k')
plot((1:P.Nt)*P.dt,S.f(:,2),'--k')
ylabel('canonical state, {\it x}','Fontsize',20)
xlabel('time (s)','Fontsize',20)
figure(2) %SPATIAL WEIGHTS
clf(2)
figure(2)
% subplot(1,2,1)
% hold on
% title('DMP','Fontsize',20)
% plot(D.f(:,1),D.f(:,2),'b')
% plot(D.w(1,:),D.w(2,:), '-ro', 'Color', [.6, .6, .6])
% % plot(wd(1,:), wd(2,:), '-r.')
% for i = 1:size(D.w, 2)
% plot(yalldmp(dmpcolor==(1+i),1), yalldmp(dmpcolor==(1+i),2), 'k.', 'Color', psicolors(i,:))
% plot(D.w(1,i), D.w(2,i), 'k*', 'Color', psicolors(i,:))
% % if i == k %kernel highlight
% % plot(yalldmp(dmpcolor==(1+i),1), yalldmp(dmpcolor==(1+i),2), 'k.', 'Color', psicolors(i,:),'Linewidth',5)
% % plot(D.w(1,k), D.w(2,k), 'k*', 'Color', psicolors(i,:),'Linewidth',5)
% % end
% end
% axis equal
% axes('Position',[.2 .5 .1 .1])
% box on
% for i = 1:size(D.w,2)
% hold on
% plot(yalldmp(dmpcolor==(1+i),1), yalldmp(dmpcolor==(1+i),2), 'k.', 'Color', psicolors(i,:))
% % if i == k %kernel highlight
% % plot(yalldmp(dmpcolor==(1+i),1), yalldmp(dmpcolor==(1+i),2), 'k.', 'Color', psicolors(i,:),'Linewidth',5)
% % end
% end
% set(gca,'YTick',[],'XTick',[])
% subplot(1,2,2)
hold on
title('SMP','Fontsize',20)
plot(S.f(:,1),S.f(:,2),'r')
plot(S.w(1,:),S.w(2,:), '-ro', 'Color', [.6, .6, .6])
% plot(ws(1,:), ws(2,:), '-r.')
for i = 1:size(S.w, 2)
plot(yallsmp(smpcolor==(1+i),1), yallsmp(smpcolor==(1+i),2), 'k.', 'Color', acolors(i,:))
plot(S.w(1,i), S.w(2,i), 'k*', 'Color', acolors(i,:))
% if i == k %kernel highlight
% plot(yallsmp(smpcolor==(1+i),1), yallsmp(smpcolor==(1+i),2), 'k.', 'Color', acolors(i,:),'Markersize',10)
% plot(S.w(1,k), S.w(2,k), 'k*', 'Color', acolors(i,:),'Linewidth',5)
% end
end
axis equal
figure(3) %TRAJECTORY
clf(3)
figure(3)
% subplot(2,1,1)
% hold on
% title('DMP','Fontsize',20)
% for i = 1:size(D.w, 2)
% plot(yalldmp(dmpcolor==(1+i),1), yalldmp(dmpcolor==(1+i),2), 'k.', 'Color', psicolors(i,:))
% end
% plot(P.desiredtraj(:,1),P.desiredtraj(:,2), '-k.');
% axis image
% subplot(2,1,2)
hold on
title('SMP','Fontsize',20)
for i = 1:size(S.w, 2)
plot(yallsmp(smpcolor==(1+i),1), yallsmp(smpcolor==(1+i),2), 'k.', 'Color', acolors(i,:))
end
plot(P.desiredtraj(:,1),P.desiredtraj(:,2), '-k.');
axis equal
% figure(4) %FORCING FUNCTION
% clf(4)
% figure(4)
% subplot(1,2,1)
% hold on
% title('DMP')
% plot((1:P.Nt)*P.dt,D.f(:,1),'-k')
% plot((1:P.Nt)*P.dt,D.f(:,2),'--k')
% xlabel('time (s)')
% ylabel('forcing function, {\it f(x)}')
% % legend('x-component','y-component')
% % axis image
% subplot(1,2,2)
% hold on
% title('SMP')
% plot((1:P.Nt)*P.dt,S.f(:,1),'-k')
% plot((1:P.Nt)*P.dt,S.f(:,2),'--k')
% xlabel('time (s)')
% ylabel('forcing function, {\it f(x)}')
% %legend('x-component','y-component')
% % axis image
figure(5) %UNWEIGHTED KERNELS
clf(5)
figure(5)
% subplot(2,1,1)
% hold on
% title('Unweighted basis functions (dmp)')
% for i = 1:size(psiall,2)
% plot((1:P.Nt)*P.dt, psiall(:,i),'-c', 'Color', psicolors(i,:))
% end
% subplot(2,1,2)
hold on
title('Unweighted basis functions (smp)')
for i = 1:size(aall,2)
plot((1:P.Nt)*P.dt, aall(:,i),'-c','Color',acolors(i,:))
end
% figure(6) %SEPARATE KERNELS
% clf(6)
% figure(6)
% subplot(2,1,1)
% hold on
% title('DMP Basis Functions')
% plot((1:P.Nt)*P.dt, psiall(:,5),'-k','Linewidth', 1.5)
% set(gca,'xtick',[])
% axis square
% subplot(2,1,2)
% hold on
% title('SMP Basis Functions')
% plot((1:P.Nt)*P.dt,aall(:,5),'-k','Linewidth',1.5)
% % legend('DMP','SMP')
% set(gca,'xtick',[])
% axis square
%
% figure(7) %KERNEL COMPARISON
% clf(7)
% figure(7)
% hold on
% title('Basis Functions')
% plot((1:P.Nt)*P.dt, psiall(:,5),'-k','Linewidth', 1.5)
% plot((1:P.Nt)*P.dt,aall(:,5),'--k','Linewidth',1.5)
% legend('DMP','RMP')
% set(gca,'xtick',[])
end