Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

extract changed to prettify output file #124

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 51 additions & 13 deletions scripts/utils/reporting.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,12 @@
import os
import sqlite3
import subprocess
from time import sleep

from scipy.io import wavfile
from scipy import signal
import noisereduce
import numpy as np
import time
import pkg_resources
import requests
from tzlocal import get_localzone

Expand All @@ -23,14 +27,42 @@ def get_safe_title(title):
ret = result.stdout.decode('utf-8')
return ret


def extract(in_file, out_file, start, stop):
result = subprocess.run(['sox', '-V1', f'{in_file}', f'{out_file}', 'trim', f'={start}', f'={stop}'],
check=True, capture_output=True)
ret = result.stdout.decode('utf-8')
err = result.stderr.decode('utf-8')
if err:
raise RuntimeError(f'{ret}:\n {err}')
log.info(f"Using python to trim input {in_file}, reduce noise, highpass filter, normalize, then output to {out_file}")

tstart = time.time()

rate, data = wavfile.read(in_file)

if (data.ndim > 1):
log.info(f"reducing stereo input of {data.shape} samples to mono")
data = data[:,0]

# perform noise reduction before trimming so it has some background
reduced_noise = noisereduce.reduce_noise(y=data, sr=rate)

# trim to start and stop of detection
s=int(start*rate)
e=int(stop*rate)
#log.info(f"Trimming file of {data.size} samples to range {s} - {e}")
trimmed = reduced_noise[s:e]

# design and apply highpass filter
cutoff = 1000.0
b, a = signal.butter(N=6, Wn=cutoff, btype='highpass', fs=rate)
filtered = signal.filtfilt(b, a, reduced_noise)

# normalize for 16 bit integer output
normalization = int(32000 / max(filtered))

output = (filtered * normalization).astype(np.int16)

wavfile.write(out_file, rate, output)

elapsed = time.time() - tstart
log.info(f"Performed noise reduction, filter, normalize in {elapsed:.1f} seconds.")

ret = 0
return ret


Expand Down Expand Up @@ -63,20 +95,26 @@ def spectrogram(in_file, title, comment, raw=False):
return ret


def extract_detection(file: ParseFileName, detection: Detection):
def build_output_filename(file: ParseFileName, detection: Detection):
conf = get_settings()
new_file_name = f'{detection.common_name_safe}-{detection.confidence_pct}-{file.root}.{conf["AUDIOFMT"]}'
new_dir = os.path.join(conf['EXTRACTED'], 'By_Date', f'{file.date}', f'{detection.common_name_safe}')
new_file = os.path.join(new_dir, new_file_name)

file_exists=False
if os.path.isfile(new_file):
log.warning('Extraction exists. Moving on: %s', new_file)
else:
file_exists=True
return (file_exists, new_file, new_dir)

def extract_detection(file: ParseFileName, detection: Detection):
(file_exists, new_file, new_dir) = build_output_filename(file, detection)
if (not file_exists):
os.makedirs(new_dir, exist_ok=True)
extract_safe(file.file_name, new_file, detection.start, detection.stop)
spectrogram(new_file, detection.common_name, new_file.replace(os.path.expanduser('~/'), ''))
return new_file


def write_to_db(file: ParseFileName, detection: Detection):
conf = get_settings()
# Connect to SQLite Database
Expand All @@ -97,7 +135,7 @@ def write_to_db(file: ParseFileName, detection: Detection):
break
except BaseException as e:
log.warning("Database busy: %s", e)
sleep(2)
time.sleep(2)


def summary(file: ParseFileName, detection: Detection):
Expand Down