Skip to content

Commit

Permalink
Merge branch-24.02
Browse files Browse the repository at this point in the history
  • Loading branch information
Chong Gao committed Dec 13, 2023
2 parents 96924eb + b309f70 commit f1314e0
Show file tree
Hide file tree
Showing 48 changed files with 2,403 additions and 1,225 deletions.
536 changes: 299 additions & 237 deletions CHANGELOG.md

Large diffs are not rendered by default.

8 changes: 4 additions & 4 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -130,15 +130,15 @@ mvn -pl dist -PnoSnapshots package -DskipTests
Verify that shim-specific classes are hidden from a conventional classloader.

```bash
$ javap -cp dist/target/rapids-4-spark_2.12-23.10.0-SNAPSHOT-cuda11.jar com.nvidia.spark.rapids.shims.SparkShimImpl
$ javap -cp dist/target/rapids-4-spark_2.12-23.12.0-SNAPSHOT-cuda11.jar com.nvidia.spark.rapids.shims.SparkShimImpl
Error: class not found: com.nvidia.spark.rapids.shims.SparkShimImpl
```

However, its bytecode can be loaded if prefixed with `spark3XY` not contained in the package name

```bash
$ javap -cp dist/target/rapids-4-spark_2.12-23.10.0-SNAPSHOT-cuda11.jar spark320.com.nvidia.spark.rapids.shims.SparkShimImpl | head -2
Warning: File dist/target/rapids-4-spark_2.12-23.10.0-SNAPSHOT-cuda11.jar(/spark320/com/nvidia/spark/rapids/shims/SparkShimImpl.class) does not contain class spark320.com.nvidia.spark.rapids.shims.SparkShimImpl
$ javap -cp dist/target/rapids-4-spark_2.12-23.12.0-SNAPSHOT-cuda11.jar spark320.com.nvidia.spark.rapids.shims.SparkShimImpl | head -2
Warning: File dist/target/rapids-4-spark_2.12-23.12.0-SNAPSHOT-cuda11.jar(/spark320/com/nvidia/spark/rapids/shims/SparkShimImpl.class) does not contain class spark320.com.nvidia.spark.rapids.shims.SparkShimImpl
Compiled from "SparkShims.scala"
public final class com.nvidia.spark.rapids.shims.SparkShimImpl {
```
Expand Down Expand Up @@ -181,7 +181,7 @@ mvn package -pl dist -am -Dbuildver=340 -DallowConventionalDistJar=true
Verify `com.nvidia.spark.rapids.shims.SparkShimImpl` is conventionally loadable:
```bash
$ javap -cp dist/target/rapids-4-spark_2.12-23.10.0-SNAPSHOT-cuda11.jar com.nvidia.spark.rapids.shims.SparkShimImpl | head -2
$ javap -cp dist/target/rapids-4-spark_2.12-23.12.0-SNAPSHOT-cuda11.jar com.nvidia.spark.rapids.shims.SparkShimImpl | head -2
Compiled from "SparkShims.scala"
public final class com.nvidia.spark.rapids.shims.SparkShimImpl {
```
Expand Down
2 changes: 1 addition & 1 deletion docs/additional-functionality/advanced_configs.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,6 @@ Name | Description | Default Value | Applicable at
<a name="sql.hasExtendedYearValues"></a>spark.rapids.sql.hasExtendedYearValues|Spark 3.2.0+ extended parsing of years in dates and timestamps to support the full range of possible values. Prior to this it was limited to a positive 4 digit year. The Accelerator does not support the extended range yet. This config indicates if your data includes this extended range or not, or if you don't care about getting the correct values on values with the extended range.|true|Runtime
<a name="sql.hashOptimizeSort.enabled"></a>spark.rapids.sql.hashOptimizeSort.enabled|Whether sorts should be inserted after some hashed operations to improve output ordering. This can improve output file sizes when saving to columnar formats.|false|Runtime
<a name="sql.improvedFloatOps.enabled"></a>spark.rapids.sql.improvedFloatOps.enabled|For some floating point operations spark uses one way to compute the value and the underlying cudf implementation can use an improved algorithm. In some cases this can result in cudf producing an answer when spark overflows.|true|Runtime
<a name="sql.improvedTimeOps.enabled"></a>spark.rapids.sql.improvedTimeOps.enabled|When set to true, some operators will avoid overflowing by converting epoch days directly to seconds without first converting to microseconds|false|Runtime
<a name="sql.incompatibleDateFormats.enabled"></a>spark.rapids.sql.incompatibleDateFormats.enabled|When parsing strings as dates and timestamps in functions like unix_timestamp, some formats are fully supported on the GPU and some are unsupported and will fall back to the CPU. Some formats behave differently on the GPU than the CPU. Spark on the CPU interprets date formats with unsupported trailing characters as nulls, while Spark on the GPU will parse the date with invalid trailing characters. More detail can be found at [parsing strings as dates or timestamps](../compatibility.md#parsing-strings-as-dates-or-timestamps).|false|Runtime
<a name="sql.incompatibleOps.enabled"></a>spark.rapids.sql.incompatibleOps.enabled|For operations that work, but are not 100% compatible with the Spark equivalent set if they should be enabled by default or disabled by default.|true|Runtime
<a name="sql.join.cross.enabled"></a>spark.rapids.sql.join.cross.enabled|When set to true cross joins are enabled on the GPU|true|Runtime
Expand Down Expand Up @@ -301,6 +300,7 @@ Name | SQL Function(s) | Description | Default Value | Notes
<a name="sql.expression.NthValue"></a>spark.rapids.sql.expression.NthValue|`nth_value`|nth window operator|true|None|
<a name="sql.expression.OctetLength"></a>spark.rapids.sql.expression.OctetLength|`octet_length`|The byte length of string data|true|None|
<a name="sql.expression.Or"></a>spark.rapids.sql.expression.Or|`or`|Logical OR|true|None|
<a name="sql.expression.ParseUrl"></a>spark.rapids.sql.expression.ParseUrl|`parse_url`|Extracts a part from a URL|true|None|
<a name="sql.expression.PercentRank"></a>spark.rapids.sql.expression.PercentRank|`percent_rank`|Window function that returns the percent rank value within the aggregation window|true|None|
<a name="sql.expression.Pmod"></a>spark.rapids.sql.expression.Pmod|`pmod`|Pmod|true|None|
<a name="sql.expression.PosExplode"></a>spark.rapids.sql.expression.PosExplode|`posexplode_outer`, `posexplode`|Given an input array produces a sequence of rows for each value in the array|true|None|
Expand Down
80 changes: 80 additions & 0 deletions docs/archive.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,86 @@ nav_order: 15
---
Below are archived releases for RAPIDS Accelerator for Apache Spark.

## Release v23.10.0
### Hardware Requirements:

The plugin is tested on the following architectures:

GPU Models: NVIDIA P100, V100, T4, A10/A100, L4 and H100 GPUs

### Software Requirements:

OS: Ubuntu 20.04, Ubuntu 22.04, CentOS 7, or Rocky Linux 8

NVIDIA Driver*: R470+

Runtime:
Scala 2.12
Python, Java Virtual Machine (JVM) compatible with your spark-version.

* Check the Spark documentation for Python and Java version compatibility with your specific
Spark version. For instance, visit `https://spark.apache.org/docs/3.4.1` for Spark 3.4.1.
Please be aware that we do not currently support Spark builds with Scala 2.13.

Supported Spark versions:
Apache Spark 3.2.0, 3.2.1, 3.2.2, 3.2.3, 3.2.4
Apache Spark 3.3.0, 3.3.1, 3.3.2, 3.3.3
Apache Spark 3.4.0, 3.4.1
Apache Spark 3.5.0

Supported Databricks runtime versions for Azure and AWS:
Databricks 10.4 ML LTS (GPU, Scala 2.12, Spark 3.2.1)
Databricks 11.3 ML LTS (GPU, Scala 2.12, Spark 3.3.0)
Databricks 12.2 ML LTS (GPU, Scala 2.12, Spark 3.3.2)

Supported Dataproc versions:
GCP Dataproc 2.0
GCP Dataproc 2.1

*Some hardware may have a minimum driver version greater than R470. Check the GPU spec sheet
for your hardware's minimum driver version.

*For Cloudera and EMR support, please refer to the
[Distributions](https://docs.nvidia.com/spark-rapids/user-guide/latest/faq.html#which-distributions-are-supported) section of the FAQ.

#### RAPIDS Accelerator's Support Policy for Apache Spark
The RAPIDS Accelerator maintains support for Apache Spark versions available for download from [Apache Spark](https://spark.apache.org/downloads.html)

### Download v23.10.0
* Download the [RAPIDS
Accelerator for Apache Spark 23.10.0 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.10.0/rapids-4-spark_2.12-23.10.0.jar)

This package is built against CUDA 11.8. It is tested on V100, T4, A10, A100, L4 and H100 GPUs with
CUDA 11.8 through CUDA 12.0.

### Verify signature
* Download the [RAPIDS Accelerator for Apache Spark 23.10.0 jar](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.10.0/rapids-4-spark_2.12-23.10.0.jar)
and [RAPIDS Accelerator for Apache Spark 23.10.0 jars.asc](https://repo1.maven.org/maven2/com/nvidia/rapids-4-spark_2.12/23.10.0/rapids-4-spark_2.12-23.10.0.jar.asc)
* Download the [PUB_KEY](https://keys.openpgp.org/[email protected]).
* Import the public key: `gpg --import PUB_KEY`
* Verify the signature: `gpg --verify rapids-4-spark_2.12-23.10.0.jar.asc rapids-4-spark_2.12-23.10.0.jar`

The output of signature verify:

gpg: Good signature from "NVIDIA Spark (For the signature of spark-rapids release jars) <[email protected]>"

### Release Notes
New functionality and performance improvements for this release include:
* Introduced support for Spark 3.5.0.
* Improved memory management for better control in YARN and K8s on CSP.
* Strengthened Parquet and ORC tests for enhanced stability and support.
* Reduce GPU out-of-memory (OOM) occurrences.
* Enhanced driver log with actionable insights.
* Qualification and Profiling tool:
* Enhanced user experience with the availability of the 'ascli' tool for qualification and
profiling across all platforms.
* The qualification tool now accommodates CPU-fallback transitions and broadens the speedup factor coverage.
* Extended diagnostic support for user tools to cover EMR, Databricks AWS, and Databricks Azure.
* Introduced support for cluster configuration recommendations in the profiling tool for supported platforms.

For a detailed list of changes, please refer to the
[CHANGELOG](https://github.com/NVIDIA/spark-rapids/blob/main/CHANGELOG.md).

## Release v23.08.2
### Hardware Requirements:

Expand Down
Loading

0 comments on commit f1314e0

Please sign in to comment.