Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix incorrect processing of short flags for user tools cli #677

Merged
merged 6 commits into from
Dec 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions user_tools/src/spark_rapids_pytools/common/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@

class Utils:
"""Utility class used to enclose common helpers and utilities."""
warning_issued = False

@classmethod
def gen_random_string(cls, str_length: int) -> str:
Expand Down Expand Up @@ -208,6 +209,26 @@ def gen_multiline_str(cls, *items) -> str:
def get_os_name(cls) -> str:
return os.uname().sysname

@classmethod
def get_value_or_pop(cls, provided_value, options_dict, short_flag, default_value=None):
"""
Gets a value or pops it from the provided options dictionary if the value is not explicitly provided.

:param provided_value: The value to return if not None.
:param options_dict: Dictionary containing options.
:param short_flag: Flag to look for in options_dict.
:param default_value: The default value to return if the target_key is not found. Defaults to None.
:return: provided_value or the value from options_dict or the default_value.
"""
if provided_value is not None:
return provided_value
if short_flag in options_dict:
if not cls.warning_issued:
cls.warning_issued = True
print('Warning: Instead of using short flags for argument, consider providing the value directly.')
cindyyuanjiang marked this conversation as resolved.
Show resolved Hide resolved
return options_dict.pop(short_flag)
return default_value


class ToolLogging:
"""Holds global utilities used for logging."""
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
"""Wrapper class to run tools associated with RAPIDS Accelerator for Apache Spark plugin on DATABRICKS_AWS."""
from spark_rapids_tools import CspEnv
from spark_rapids_pytools.cloud_api.sp_types import DeployMode
from spark_rapids_pytools.common.utilities import ToolLogging
from spark_rapids_pytools.common.utilities import Utils, ToolLogging
from spark_rapids_pytools.rapids.diagnostic import Diagnostic
from spark_rapids_pytools.rapids.profiling import ProfilingAsLocal
from spark_rapids_pytools.rapids.qualification import QualFilterApp, QualificationAsLocal, QualGpuClusterReshapeType
Expand All @@ -40,8 +40,8 @@ def qualification(cpu_cluster: str = None,
filter_apps: str = QualFilterApp.tostring(QualFilterApp.SAVINGS),
gpu_cluster_recommendation: str = QualGpuClusterReshapeType.tostring(
QualGpuClusterReshapeType.get_default()),
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
cpu_discount: int = None,
gpu_discount: int = None,
global_discount: int = None,
Expand Down Expand Up @@ -105,6 +105,15 @@ def qualification(cpu_cluster: str = None,
For more details on Qualification tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-qualification-tool.html#qualification-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
profile = Utils.get_value_or_pop(profile, rapids_options, 'p')
aws_profile = Utils.get_value_or_pop(aws_profile, rapids_options, 'a')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
filter_apps = Utils.get_value_or_pop(filter_apps, rapids_options, 'f')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down Expand Up @@ -150,8 +159,8 @@ def profiling(gpu_cluster: str = None,
remote_folder: str = None,
tools_jar: str = None,
credentials_file: str = None,
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
**rapids_options) -> None:
"""
The Profiling tool analyzes both CPU or GPU generated event logs and generates information
Expand Down Expand Up @@ -192,6 +201,17 @@ def profiling(gpu_cluster: str = None,
For more details on Profiling tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-profiling-tool.html#profiling-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
profile = Utils.get_value_or_pop(profile, rapids_options, 'p')
aws_profile = Utils.get_value_or_pop(aws_profile, rapids_options, 'a')
credentials_file = Utils.get_value_or_pop(credentials_file, rapids_options, 'c')
gpu_cluster = Utils.get_value_or_pop(gpu_cluster, rapids_options, 'g')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
worker_info = Utils.get_value_or_pop(worker_info, rapids_options, 'w')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
"""Wrapper class to run tools associated with RAPIDS Accelerator for Apache Spark plugin on DATABRICKS_AZURE."""
from spark_rapids_tools import CspEnv
from spark_rapids_pytools.cloud_api.sp_types import DeployMode
from spark_rapids_pytools.common.utilities import ToolLogging
from spark_rapids_pytools.common.utilities import Utils, ToolLogging
from spark_rapids_pytools.rapids.diagnostic import Diagnostic
from spark_rapids_pytools.rapids.profiling import ProfilingAsLocal
from spark_rapids_pytools.rapids.qualification import QualFilterApp, QualificationAsLocal, QualGpuClusterReshapeType
Expand All @@ -39,8 +39,8 @@ def qualification(cpu_cluster: str = None,
filter_apps: str = QualFilterApp.tostring(QualFilterApp.SAVINGS),
gpu_cluster_recommendation: str = QualGpuClusterReshapeType.tostring(
QualGpuClusterReshapeType.get_default()),
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
cpu_discount: int = None,
gpu_discount: int = None,
global_discount: int = None,
Expand Down Expand Up @@ -103,6 +103,14 @@ def qualification(cpu_cluster: str = None,
For more details on Qualification tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-qualification-tool.html#qualification-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
profile = Utils.get_value_or_pop(profile, rapids_options, 'p')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
filter_apps = Utils.get_value_or_pop(filter_apps, rapids_options, 'f')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down Expand Up @@ -146,8 +154,8 @@ def profiling(gpu_cluster: str = None,
remote_folder: str = None,
tools_jar: str = None,
credentials_file: str = None,
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
**rapids_options) -> None:
"""
The Profiling tool analyzes both CPU or GPU generated event logs and generates information
Expand Down Expand Up @@ -186,6 +194,16 @@ def profiling(gpu_cluster: str = None,
For more details on Profiling tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-profiling-tool.html#profiling-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
profile = Utils.get_value_or_pop(profile, rapids_options, 'p')
credentials_file = Utils.get_value_or_pop(credentials_file, rapids_options, 'c')
gpu_cluster = Utils.get_value_or_pop(gpu_cluster, rapids_options, 'g')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
worker_info = Utils.get_value_or_pop(worker_info, rapids_options, 'w')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

from spark_rapids_tools import CspEnv
from spark_rapids_pytools.cloud_api.sp_types import DeployMode
from spark_rapids_pytools.common.utilities import ToolLogging
from spark_rapids_pytools.common.utilities import Utils, ToolLogging
from spark_rapids_pytools.rapids.qualification import QualFilterApp, QualificationAsLocal, QualGpuClusterReshapeType


Expand All @@ -36,8 +36,8 @@ def qualification(cpu_cluster: str = None,
filter_apps: str = QualFilterApp.tostring(QualFilterApp.SAVINGS),
gpu_cluster_recommendation: str = QualGpuClusterReshapeType.tostring(
QualGpuClusterReshapeType.get_default()),
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
cpu_discount: int = None,
gpu_discount: int = None,
global_discount: int = None,
Expand Down Expand Up @@ -100,6 +100,13 @@ def qualification(cpu_cluster: str = None,
For more details on Qualification tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-qualification-tool.html#qualification-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
filter_apps = Utils.get_value_or_pop(filter_apps, rapids_options, 'f')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down
26 changes: 21 additions & 5 deletions user_tools/src/spark_rapids_pytools/wrappers/dataproc_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

from spark_rapids_tools import CspEnv
from spark_rapids_pytools.cloud_api.sp_types import DeployMode
from spark_rapids_pytools.common.utilities import ToolLogging
from spark_rapids_pytools.common.utilities import Utils, ToolLogging
from spark_rapids_pytools.rapids.bootstrap import Bootstrap
from spark_rapids_pytools.rapids.diagnostic import Diagnostic
from spark_rapids_pytools.rapids.profiling import ProfilingAsLocal
Expand All @@ -39,8 +39,8 @@ def qualification(cpu_cluster: str = None,
filter_apps: str = QualFilterApp.tostring(QualFilterApp.SAVINGS),
gpu_cluster_recommendation: str = QualGpuClusterReshapeType.tostring(
QualGpuClusterReshapeType.get_default()),
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
cpu_discount: int = None,
gpu_discount: int = None,
global_discount: int = None,
Expand Down Expand Up @@ -102,6 +102,13 @@ def qualification(cpu_cluster: str = None,
For more details on Qualification tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-qualification-tool.html#qualification-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
filter_apps = Utils.get_value_or_pop(filter_apps, rapids_options, 'f')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down Expand Up @@ -143,8 +150,8 @@ def profiling(gpu_cluster: str = None,
remote_folder: str = None,
tools_jar: str = None,
credentials_file: str = None,
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
**rapids_options) -> None:
"""
The Profiling tool analyzes both CPU or GPU generated event logs and generates information
Expand Down Expand Up @@ -183,6 +190,15 @@ def profiling(gpu_cluster: str = None,
For more details on Profiling tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-profiling-tool.html#profiling-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
credentials_file = Utils.get_value_or_pop(credentials_file, rapids_options, 'c')
gpu_cluster = Utils.get_value_or_pop(gpu_cluster, rapids_options, 'g')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
worker_info = Utils.get_value_or_pop(worker_info, rapids_options, 'w')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down
27 changes: 22 additions & 5 deletions user_tools/src/spark_rapids_pytools/wrappers/emr_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
"""Wrapper class to run tools associated with RAPIDS Accelerator for Apache Spark plugin on AWS-EMR."""
from spark_rapids_tools import CspEnv
from spark_rapids_pytools.cloud_api.sp_types import DeployMode
from spark_rapids_pytools.common.utilities import ToolLogging
from spark_rapids_pytools.common.utilities import Utils, ToolLogging
from spark_rapids_pytools.rapids.bootstrap import Bootstrap
from spark_rapids_pytools.rapids.diagnostic import Diagnostic
from spark_rapids_pytools.rapids.qualification import QualFilterApp, QualificationAsLocal, \
Expand All @@ -40,8 +40,8 @@ def qualification(cpu_cluster: str = None,
filter_apps: str = QualFilterApp.tostring(QualFilterApp.SAVINGS),
gpu_cluster_recommendation: str = QualGpuClusterReshapeType.tostring(
QualGpuClusterReshapeType.get_default()),
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
cpu_discount: int = None,
gpu_discount: int = None,
global_discount: int = None,
Expand Down Expand Up @@ -100,6 +100,14 @@ def qualification(cpu_cluster: str = None,
For more details on Qualification tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-qualification-tool.html#qualification-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
profile = Utils.get_value_or_pop(profile, rapids_options, 'p')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
filter_apps = Utils.get_value_or_pop(filter_apps, rapids_options, 'f')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down Expand Up @@ -140,8 +148,8 @@ def profiling(gpu_cluster: str = None,
local_folder: str = None,
remote_folder: str = None,
tools_jar: str = None,
jvm_heap_size: int = 24,
verbose: bool = False,
jvm_heap_size: int = None,
verbose: bool = None,
**rapids_options) -> None:
"""
The Profiling tool analyzes both CPU or GPU generated event logs and generates information
Expand Down Expand Up @@ -177,6 +185,15 @@ def profiling(gpu_cluster: str = None,
For more details on Profiling tool options, please visit
https://docs.nvidia.com/spark-rapids/user-guide/latest/spark-profiling-tool.html#profiling-tool-options
"""
verbose = Utils.get_value_or_pop(verbose, rapids_options, 'v', False)
profile = Utils.get_value_or_pop(profile, rapids_options, 'p')
gpu_cluster = Utils.get_value_or_pop(gpu_cluster, rapids_options, 'g')
remote_folder = Utils.get_value_or_pop(remote_folder, rapids_options, 'r')
jvm_heap_size = Utils.get_value_or_pop(jvm_heap_size, rapids_options, 'j', 24)
eventlogs = Utils.get_value_or_pop(eventlogs, rapids_options, 'e')
tools_jar = Utils.get_value_or_pop(tools_jar, rapids_options, 't')
worker_info = Utils.get_value_or_pop(worker_info, rapids_options, 'w')
local_folder = Utils.get_value_or_pop(local_folder, rapids_options, 'l')
if verbose:
# when debug is set to true set it in the environment.
ToolLogging.enable_debug_mode()
Expand Down
Loading
Loading