Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/branch-25.02' into feature/expos…
Browse files Browse the repository at this point in the history
…e-max-nesting-depth
  • Loading branch information
ustcfy committed Dec 11, 2024
2 parents 2e545ba + 653c5c6 commit 9869d88
Show file tree
Hide file tree
Showing 3 changed files with 407 additions and 12 deletions.
242 changes: 231 additions & 11 deletions src/main/cpp/src/xxhash64.cu
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

#include <cudf/column/column_factories.hpp>
#include <cudf/detail/utilities/algorithm.cuh>
#include <cudf/table/experimental/row_operators.cuh>
#include <cudf/table/table_device_view.cuh>

#include <rmm/cuda_stream_view.hpp>
Expand All @@ -33,6 +34,8 @@ namespace {
using hash_value_type = int64_t;
using half_size_type = int32_t;

constexpr int MAX_NESTED_DEPTH = 8;

constexpr __device__ inline int64_t rotate_bits_left_signed(hash_value_type h, int8_t r)
{
return (h << r) | (h >> (64 - r)) & ~(-1 << r);
Expand Down Expand Up @@ -271,6 +274,28 @@ hash_value_type __device__ inline XXHash_64<numeric::decimal128>::operator()(
/**
* @brief Computes the hash value of a row in the given table.
*
* This functor uses Spark conventions for xxhash64 hashing, which differs from
* the xxhash64 implementation used in the rest of libcudf. These differences
* include:
* - Serially using the output hash as an input seed for the next item
* - Ignorance of null values
*
* The serial use of hashes as seeds means that data of different nested types
* can exhibit hash collisions. For example, a row of an integer column
* containing a 1 will have the same hash as a lists column of integers
* containing a list of [1] and a struct column of a single integer column
* containing a struct of {1}.
*
* As a consequence of ignoring null values, inputs like [1], [1, null], and
* [null, 1] have the same hash (an expected hash collision). This kind of
* collision can also occur across a table of nullable columns and with nulls
* in structs ({1, null} and {null, 1} have the same hash). The seed value (the
* previous element's hash value) is returned as the hash if an element is
* null.
*
* For additional differences such as special tail processing and decimal type
* handling, refer to the SparkXXHash64 functor.
*
* @tparam Nullate A cudf::nullate type describing whether to check for nulls.
*/
template <typename Nullate>
Expand All @@ -296,27 +321,186 @@ class device_row_hasher {

/**
* @brief Computes the hash value of an element in the given column.
*
* When the column is non-nested, this is a simple wrapper around the element_hasher.
* When the column is nested, this uses a seed value to serially compute each
* nested element, with the output hash becoming the seed for the next value.
* This requires constructing a new hash functor for each nested element,
* using the new seed from the previous element's hash. The hash of a null
* element is the input seed (the previous element's hash).
*/
class element_hasher_adapter {
public:
template <typename T, CUDF_ENABLE_IF(cudf::column_device_view::has_element_accessor<T>())>
class element_hasher {
private:
Nullate _check_nulls;
hash_value_type _seed;

public:
__device__ element_hasher(Nullate check_nulls, hash_value_type seed)
: _check_nulls(check_nulls), _seed(seed)
{
}

template <typename T, CUDF_ENABLE_IF(cudf::column_device_view::has_element_accessor<T>())>
__device__ hash_value_type operator()(cudf::column_device_view const& col,
cudf::size_type row_index) const noexcept
{
if (_check_nulls && col.is_null(row_index)) { return _seed; }
return XXHash_64<T>{_seed}(col.element<T>(row_index));
}

template <typename T, CUDF_ENABLE_IF(not cudf::column_device_view::has_element_accessor<T>())>
__device__ hash_value_type operator()(cudf::column_device_view const&,
cudf::size_type) const noexcept
{
CUDF_UNREACHABLE("Unsupported type for xxhash64");
}
};

template <typename T, CUDF_ENABLE_IF(not cudf::is_nested<T>())>
__device__ hash_value_type operator()(cudf::column_device_view const& col,
cudf::size_type row_index,
Nullate const _check_nulls,
hash_value_type const _seed) const noexcept
{
if (_check_nulls && col.is_null(row_index)) { return _seed; }
auto const hasher = XXHash_64<T>{_seed};
return hasher(col.element<T>(row_index));
auto const hasher = element_hasher{_check_nulls, _seed};
return hasher.template operator()<T>(col, row_index);
}

template <typename T, CUDF_ENABLE_IF(not cudf::column_device_view::has_element_accessor<T>())>
__device__ hash_value_type operator()(cudf::column_device_view const&,
cudf::size_type,
Nullate const,
hash_value_type const) const noexcept
struct col_stack_frame {
private:
cudf::column_device_view _column; // the column to process
int _idx_to_process; // the index of child or element to process next

public:
__device__ col_stack_frame() =
delete; // Because the default constructor of `cudf::column_device_view` is deleted

__device__ col_stack_frame(cudf::column_device_view col)
: _column(std::move(col)), _idx_to_process(0)
{
}

__device__ int get_and_inc_idx_to_process() { return _idx_to_process++; }

__device__ int get_idx_to_process() { return _idx_to_process; }

__device__ cudf::column_device_view get_column() { return _column; }
};

/**
* @brief Functor to compute hash value for nested columns.
*
* This functor uses a stack to process nested columns. It iterates through the nested columns
* in a depth-first manner. The stack is used to keep track of the nested columns that need to
* be processed.
*
* - If the current column is a list column, it replaces the list column with its most inner
* non-list child since null values can be ignored in the xxhash64 computation.
* - If the current column is a struct column, there are two cases:
* a. If the struct column has only one row, it would be treated as a struct element. The
* children of the struct element would be pushed into the stack.
* b. If the struct column has multiple rows, it would be treated as a struct column. The
* next struct element would be pushed into the stack.
* - If the current column is a primitive column, it computes the hash value.
*
* For example, consider that the input column is of type `List<Struct<int, float>>`.
* Assume that the element at `row_index` is: [(1, 2.0), (3, 4.0)].
* The sliced column is noted as L1 here.
*
* L1 List<Struct<int, float>>
* |
* S1 Struct<int, float> ----> `struct_column` with multiple rows
* / \
* S1[0] S1[1] Struct<int, float> ----> `struct_element` with single row
* / \ / \
* i1 f1 i2 f2 Primitive columns
*
* List level L1:
* |Index|List<Struct<int, float>> |
* |-----|-------------------------|
* |0 | [(1, 2.0), (3, 4.0)] |
* length: 1
* Offsets: 0, 2
*
* Struct level S1:
* |Index|Struct<int, float>|
* |-----|------------------|
* |0 | (1, 2.0) |
* |1 | (3, 4.0) |
* length: 2
*
* @tparam T Type of the column.
* @param col The column to hash.
* @param row_index The index of the row to hash.
* @param _check_nulls A flag to indicate whether to check for null values.
* @param _seed The initial seed value for the hash computation.
* @return The computed hash value.
*
* @note This function is only enabled for nested columns.
*/
template <typename T, CUDF_ENABLE_IF(cudf::is_nested<T>())>
__device__ hash_value_type operator()(cudf::column_device_view const& col,
cudf::size_type row_index,
Nullate const _check_nulls,
hash_value_type const _seed) const noexcept
{
CUDF_UNREACHABLE("Unsupported type for xxhash64");
hash_value_type ret = _seed;
cudf::column_device_view curr_col = col.slice(row_index, 1);
// The default constructor of `col_stack_frame` is deleted, so it can not allocate an array
// of `col_stack_frame` directly.
// Instead leverage the byte array to create the col_stack_frame array.
alignas(col_stack_frame) char stack_wrapper[sizeof(col_stack_frame) * MAX_NESTED_DEPTH];
auto col_stack = reinterpret_cast<col_stack_frame*>(stack_wrapper);
int stack_size = 0;

col_stack[stack_size++] = col_stack_frame(curr_col);

while (stack_size > 0) {
col_stack_frame& top = col_stack[stack_size - 1];
curr_col = top.get_column();
// Replace list column with its most inner non-list child
if (curr_col.type().id() == cudf::type_id::LIST) {
do {
curr_col = cudf::detail::lists_column_device_view(curr_col).get_sliced_child();
} while (curr_col.type().id() == cudf::type_id::LIST);
col_stack[stack_size - 1] = col_stack_frame(curr_col);
continue;
}

if (curr_col.type().id() == cudf::type_id::STRUCT) {
if (curr_col.size() <= 1) { // struct element
// All child columns processed, pop the element
if (top.get_idx_to_process() == curr_col.num_child_columns()) {
--stack_size;
} else {
// Push the next child column into the stack
col_stack[stack_size++] =
col_stack_frame(cudf::detail::structs_column_device_view(curr_col).get_sliced_child(
top.get_and_inc_idx_to_process()));
}
} else { // struct column
if (top.get_idx_to_process() == curr_col.size()) {
--stack_size;
} else {
col_stack[stack_size++] =
col_stack_frame(curr_col.slice(top.get_and_inc_idx_to_process(), 1));
}
}
} else { // Primitive column
ret = cudf::detail::accumulate(
thrust::counting_iterator(0),
thrust::counting_iterator(curr_col.size()),
ret,
[curr_col, _check_nulls] __device__(auto hash, auto element_index) {
return cudf::type_dispatcher<cudf::experimental::dispatch_void_if_nested>(
curr_col.type(), element_hasher{_check_nulls, hash}, curr_col, element_index);
});
--stack_size;
}
}
return ret;
}
};

Expand All @@ -325,6 +509,40 @@ class device_row_hasher {
hash_value_type const _seed;
};

void check_nested_depth(cudf::table_view const& input)
{
using column_checker_fn_t = std::function<int(cudf::column_view const&)>;

column_checker_fn_t get_nested_depth = [&](cudf::column_view const& col) {
if (col.type().id() == cudf::type_id::LIST) {
auto const child_col = cudf::lists_column_view(col).child();
// When encountering a List of Struct column, we need to account for an extra depth,
// as both the struct column and its elements will be pushed into the stack.
if (child_col.type().id() == cudf::type_id::STRUCT) {
return 1 + get_nested_depth(child_col);
}
return get_nested_depth(child_col);
} else if (col.type().id() == cudf::type_id::STRUCT) {
int max_child_depth = 0;
for (auto child = col.child_begin(); child != col.child_end(); ++child) {
max_child_depth = std::max(max_child_depth, get_nested_depth(*child));
}
return 1 + max_child_depth;
} else { // Primitive type
return 1;
}
};

for (auto i = 0; i < input.num_columns(); i++) {
cudf::column_view const& col = input.column(i);
CUDF_EXPECTS(get_nested_depth(col) <= MAX_NESTED_DEPTH,
"The " + std::to_string(i) +
"-th column exceeds the maximum allowed nested depth. " +
"Current depth: " + std::to_string(get_nested_depth(col)) + ", " +
"Maximum allowed depth: " + std::to_string(MAX_NESTED_DEPTH));
}
}

} // namespace

std::unique_ptr<cudf::column> xxhash64(cudf::table_view const& input,
Expand All @@ -343,7 +561,9 @@ std::unique_ptr<cudf::column> xxhash64(cudf::table_view const& input,
// Return early if there's nothing to hash
if (input.num_columns() == 0 || input.num_rows() == 0) { return output; }

bool const nullable = has_nulls(input);
check_nested_depth(input);

bool const nullable = has_nested_nulls(input);
auto const input_view = cudf::table_device_view::create(input, stream);
auto output_view = output->mutable_view();

Expand Down
1 change: 0 additions & 1 deletion src/main/java/com/nvidia/spark/rapids/jni/Hash.java
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,6 @@ public static ColumnVector xxhash64(long seed, ColumnView columns[]) {
assert columns[i] != null : "Column vectors passed may not be null";
assert columns[i].getRowCount() == size : "Row count mismatch, all columns must be the same size";
assert !columns[i].getType().isDurationType() : "Unsupported column type Duration";
assert !columns[i].getType().isNestedType() : "Unsupported column type Nested";
columnViews[i] = columns[i].getNativeView();
}
return new ColumnVector(xxhash64(seed, columnViews));
Expand Down
Loading

0 comments on commit 9869d88

Please sign in to comment.