Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding speechlm AutoModel test #11990

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions .github/workflows/cicd-main.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3888,6 +3888,18 @@ jobs:
AFTER_SCRIPT: |
rm -rf nemo_experiments

# L2: SpeechLM tests
L2_HF_Transformer_SpeechLM_SFT_2gpu:
needs: [pre-flight, cicd-test-container-build]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.pre-flight.outputs.test_to_run), 'L2_HF_Transformer_SpeechLM_SFT_2gpu') || needs.pre-flight.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
TRANSFORMERS_OFFLINE=1 python tests/collections/speechlm/hf/sft.py --model /home/TestData/speechlm/whisper-small/ --max-steps 10 --devices 2 --strategy ddp
AFTER_SCRIPT: |
rm -rf nemo_experiments

# L2: Megatron Mock Data Generation
L2_Megatron_Mock_Data_Generation_MockGPTDataset:
needs: [pre-flight, cicd-test-container-build]
Expand Down Expand Up @@ -5164,6 +5176,7 @@ jobs:
- L2_HF_Transformer_PT_2gpu
- L2_HF_Transformer_PT_2gpu_nemorun
- L2_HF_Transformer_PT_TE_Acceleration
- L2_HF_Transformer_SpeechLM_SFT_2gpu
- L2_NeMo_2_SSM_Pretraining
- L2_NeMo_2_SSM_Finetuning
- L2_NeMo_2_T5_Pretraining
Expand Down
14 changes: 13 additions & 1 deletion examples/speechlm/sft/hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,17 @@


class LhotseHfNeMoDataset(torch.utils.data.Dataset):
"""Class for a speechLM dataset

Args:
processor (AutoProcessor): the processor to use
tokenizer (AutoTokenizer): the tokenizer to use
decoder_mask_fill (int): Value to fill in decoder mask

Returns:
pl.LightningDataModule: the dataset to train with.
"""

def __init__(self, processor, tokenizer, decoder_mask_fill=-100):
super().__init__()
self.processor = processor
Expand Down Expand Up @@ -69,6 +80,7 @@ def __getitem__(self, cuts):
# Models can be one of the supported ones by AutoModelForSpeechSeq2Seq such as
# openai/whisper-large-v3 and facebook/s2t-small-librispeech-asr
parser.add_argument('--model', default='openai/whisper-large-v3')
parser.add_argument('--data-path', type=str, required=True)
parser.add_argument('--strategy', type=str, default='auto', choices=['auto', 'ddp', 'fsdp'])
parser.add_argument('--devices', default=1)
parser.add_argument('--accelerator', default='gpu', choices=['gpu'])
Expand All @@ -83,7 +95,7 @@ def __getitem__(self, cuts):

config = OmegaConf.create(
{
"cuts_path": "/opt/checkpoints/lhotse/libri/libri-train-5.jsonl.gz",
"cuts_path": args.data_path,
"sample_rate": 16000,
"shuffle": True,
"num_workers": 2,
Expand Down
129 changes: 129 additions & 0 deletions tests/collections/speechlm/hf/sft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import fiddle as fdl
import torch
from lhotse.dataset.collation import collate_matrices, collate_vectors
from omegaconf import OmegaConf

from nemo import lightning as nl
from nemo.collections import speechlm
from nemo.collections.common.data.lhotse import get_lhotse_dataloader_from_config
from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
from nemo.collections.speechlm.models import HFAutoModelForSpeechSeq2Seq

torch.set_float32_matmul_precision("medium")


class LhotseHfNeMoDataset(torch.utils.data.Dataset):
def __init__(self, processor, tokenizer, decoder_mask_fill=-100):
super().__init__()
self.processor = processor
self.tokenizer = tokenizer
self.decoder_mask_fill = decoder_mask_fill

def __getitem__(self, cuts):
features = []
for cut in cuts:
audio = cut.load_audio()
features.append(
self.processor(
audio,
sampling_rate=cut.sampling_rate,
return_tensors="pt",
text=cut.supervisions[0].text,
)
)

input_features = collate_matrices(tensors=[f["input_features"].squeeze(0) for f in features])
labels = collate_vectors(tensors=[c.supervisions[0].tokens for c in cuts])
decoder_input_ids = labels[:, :-1]
decoder_input_ids = decoder_input_ids.masked_fill(
decoder_input_ids == self.decoder_mask_fill, self.tokenizer.pad_id
)
labels = labels[:, 1:].reshape(-1)

return {
"input_features": input_features,
"labels": labels,
"decoder_input_ids": decoder_input_ids,
}


if __name__ == '__main__':
import argparse

parser = argparse.ArgumentParser()

# Models can be one of the supported ones by AutoModelForSpeechSeq2Seq such as
# openai/whisper-large-v3 and facebook/s2t-small-librispeech-asr
parser.add_argument('--model', default='openai/whisper-large-v3')
parser.add_argument('--strategy', type=str, default='auto', choices=['auto', 'ddp', 'fsdp'])
parser.add_argument('--devices', default=1)
parser.add_argument('--accelerator', default='gpu', choices=['gpu'])
parser.add_argument('--max-steps', type=int, default=100)
parser.add_argument('--model-save-path', type=str, default=None)
args = parser.parse_args()

model = HFAutoModelForSpeechSeq2Seq(model_name=args.model)
model = model.to(torch.float)
processor = model.processor
tokenizer = AutoTokenizer(args.model, include_special_tokens=True)

config = OmegaConf.create(
{
"cuts_path": "/home/TestData/speechlm/lhotse/libri/libri-train-5.jsonl.gz",
"sample_rate": 16000,
"shuffle": True,
"num_workers": 2,
"batch_size": 4,
"shuffle_buffer_size": 100,
}
)

train_dataloader = get_lhotse_dataloader_from_config(
config,
global_rank=0,
world_size=1,
dataset=LhotseHfNeMoDataset(
processor=processor,
tokenizer=tokenizer,
),
tokenizer=tokenizer,
)

speechlm.api.finetune(
model=model,
data=train_dataloader,
trainer=nl.Trainer(
devices=args.devices,
max_steps=args.max_steps,
accelerator=args.accelerator,
strategy=args.strategy,
precision="bf16-mixed",
log_every_n_steps=1,
limit_val_batches=0.0,
num_sanity_val_steps=0,
accumulate_grad_batches=10,
gradient_clip_val=0.5,
use_distributed_sampler=False,
callbacks=[],
logger=None,
),
optim=fdl.build(speechlm.adam.pytorch_adam_with_flat_lr(lr=1e-5)),
log=None,
)

if args.model_save_path is not None:
model.save_pretrained(args.model_save_path)
Loading