-
Notifications
You must be signed in to change notification settings - Fork 86
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update readme with links to arxiv and ai playground (#25)
* add steerlm Signed-off-by: Zhilin Wang <[email protected]> * add license for common.py Signed-off-by: jiaqiz <[email protected]> * fix build Signed-off-by: Gerald Shen <[email protected]> * concat datasets before training since only 1 epoch is supported now Signed-off-by: jiaqiz <[email protected]> * concat AC-SFT training data to get 2 epochs Signed-off-by: jiaqiz <[email protected]> --------- Signed-off-by: Zhilin Wang <[email protected]> Signed-off-by: jiaqiz <[email protected]> Signed-off-by: Gerald Shen <[email protected]> Co-authored-by: jiaqiz <[email protected]> Co-authored-by: Gerald Shen <[email protected]>
- Loading branch information
1 parent
8e22e6f
commit 1d50757
Showing
8 changed files
with
714 additions
and
204 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
This script is for annotating attributes for a dataset by sending requests to a regression reward model server. | ||
""" | ||
|
||
|
||
import argparse | ||
import json | ||
import os | ||
from typing import List | ||
|
||
import jsonlines | ||
import numpy as np | ||
from common import ( | ||
ALL_STEERLM_ATTRIBUTES, | ||
ASSISTANT_TURN_TEMPLATE, | ||
LABEL_PREFIX, | ||
SYSTEM_PROMPT, | ||
SYSTEM_PROMPT_TEMPLATE, | ||
USER_TURN_TEMPLATE, | ||
) | ||
from pytriton.client import FuturesModelClient | ||
from tqdm import tqdm, trange | ||
|
||
|
||
def _str_list2numpy(str_list: List[str]) -> np.ndarray: | ||
str_ndarray = np.array(str_list)[..., np.newaxis] | ||
return np.char.encode(str_ndarray, "utf-8") | ||
|
||
|
||
def prepare_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--output-file", type=str, required=True) | ||
parser.add_argument("--input-file", type=str, required=True) | ||
parser.add_argument("--port", type=int, default=5555) | ||
parser.add_argument("--host", type=str, default="localhost") | ||
parser.add_argument("--model_name", type=str, default="reward_model") | ||
parser.add_argument("--add-eos", action="store_true") | ||
return parser.parse_args() | ||
|
||
|
||
def get_reward( | ||
sentences: List[str], add_EOS=False, host="localhost", port=5555, model_name="reward_model", | ||
): | ||
sentences = _str_list2numpy(sentences) | ||
|
||
futures = [] | ||
|
||
with FuturesModelClient(f"{host}:{port}", model_name) as client: | ||
for sen in np.split(sentences, sentences.shape[0]): | ||
add_EOS_arr = np.ones_like(sen, dtype=bool) * add_EOS | ||
future = client.infer_batch(sentences=sen, add_EOS=add_EOS_arr) | ||
futures.append(future) | ||
|
||
all_result_dicts = [f.result() for f in futures] | ||
|
||
all_rewards, all_exceeded = [], [] | ||
|
||
for output_dict in all_result_dicts: | ||
reward_out = output_dict["rewards"].flatten().tolist() | ||
|
||
all_rewards.append(reward_out) | ||
all_exceeded += output_dict["exceeded"].tolist() | ||
|
||
return all_rewards, all_exceeded | ||
|
||
|
||
def get_key(l): | ||
convs = [c["value"] for c in l["conversations"]] | ||
return "".join(convs) | ||
|
||
|
||
def main(args): | ||
inference_output = args.output_file | ||
|
||
exist = set() | ||
if os.path.exists(inference_output): | ||
with jsonlines.open(inference_output) as reader: | ||
for obj in tqdm(reader): | ||
exist.add(get_key(obj)) | ||
|
||
fout = open(inference_output, "a", encoding="utf-8") | ||
|
||
# to warm up the jit | ||
_ = get_reward(["hello world!"], add_EOS=args.add_eos, host=args.host, port=args.port, model_name=args.model_name) | ||
|
||
all_samples, inputs = [], [] | ||
|
||
with jsonlines.open(args.input_file) as reader: | ||
for obj in tqdm(reader): | ||
if get_key(obj) in exist: | ||
continue | ||
user = obj["mask"] | ||
turns = [] | ||
text = SYSTEM_PROMPT_TEMPLATE.format(value=SYSTEM_PROMPT) | ||
for turn in obj["conversations"]: | ||
value = turn["value"] | ||
if turn["from"] == user: | ||
text += USER_TURN_TEMPLATE.format(value=value) | ||
else: | ||
text += ASSISTANT_TURN_TEMPLATE.format(value=value) | ||
if "label" in turn and turn["label"] is not None: | ||
out_text = text + LABEL_PREFIX | ||
turns.append(out_text) | ||
|
||
all_samples.append(turns) | ||
inputs.append(obj) | ||
|
||
print(f"exist {len(exist)}, rest {len(inputs)}") | ||
if len(inputs) == 0: | ||
exit(0) | ||
|
||
for idx in trange(0, len(all_samples)): | ||
input = inputs[idx] | ||
sample = all_samples[idx] | ||
rewards_all, _ = get_reward( | ||
sample, add_EOS=args.add_eos, host=args.host, port=args.port, model_name=args.model_name | ||
) | ||
|
||
t = 0 | ||
for turn in input["conversations"]: | ||
if "label" in turn and turn["label"] is not None: | ||
reward = rewards_all[t] | ||
t += 1 | ||
|
||
reward_each = [min(4.0, max(0.0, float(r))) for r in reward] | ||
reward_each = [round(r) for r in reward_each] | ||
|
||
reward_string = ",".join(f"{a}:{r}" for a, r in zip(ALL_STEERLM_ATTRIBUTES, reward_each)) | ||
turn["label"] = reward_string | ||
|
||
assert t == len(rewards_all) | ||
|
||
fout.write(json.dumps(input) + "\n") | ||
|
||
print("all annotations finished") | ||
fout.close() | ||
|
||
|
||
if __name__ == "__main__": | ||
main(prepare_args()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
SYSTEM_PROMPT = ( | ||
"A chat between a curious user and an artificial intelligence assistant. " | ||
"The assistant gives helpful, detailed, and polite answers to the user's questions." | ||
) | ||
|
||
SYSTEM_PROMPT_TEMPLATE = "<extra_id_0>System\n{value}\n" | ||
|
||
USER_TURN_TEMPLATE = "<extra_id_1>User\n{value}\n" | ||
|
||
ASSISTANT_TURN_TEMPLATE = "<extra_id_1>Assistant\n{value}\n" | ||
|
||
LABEL_PREFIX = "<extra_id_2>" | ||
|
||
OPEN_ASSISTANT_ATTRIBUTES = ["quality", "toxicity", "humor", "creativity"] | ||
|
||
HELPSTEER_ATTRIBUTES = ["helpfulness", "correctness", "coherence", "complexity", "verbosity"] | ||
|
||
ALL_STEERLM_ATTRIBUTES = OPEN_ASSISTANT_ATTRIBUTES + HELPSTEER_ATTRIBUTES |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
This script is to preprocess HelpSteer dataset from HuggingFace format into Attribute-conditioned SFT training format. | ||
""" | ||
|
||
import argparse | ||
import json | ||
import os | ||
|
||
from common import HELPSTEER_ATTRIBUTES, SYSTEM_PROMPT | ||
from datasets import load_dataset | ||
|
||
|
||
def download_helpsteer(): | ||
ds = load_dataset("nvidia/HelpSteer") | ||
train = ds["train"] | ||
val = ds["validation"] | ||
return train, val | ||
|
||
|
||
def format_label(dp): | ||
label_list = [] | ||
for attr in HELPSTEER_ATTRIBUTES: | ||
label_list.append(f"{attr}:{dp[attr]}") | ||
return ",".join(label_list) | ||
|
||
|
||
def process_dataset(data): | ||
output = [] | ||
for dp in data: | ||
conversation_obj = {} | ||
conversation_obj["conversations"] = [ | ||
{"value": dp["prompt"], "from": "User", "label": None}, | ||
{"value": dp["response"], "from": "Assistant", "label": format_label(dp)}, | ||
] | ||
conversation_obj["system"] = SYSTEM_PROMPT | ||
conversation_obj["mask"] = "User" | ||
conversation_obj["type"] = "VALUE_TO_TEXT" | ||
output.append(conversation_obj) | ||
return output | ||
|
||
|
||
def main(output_dir): | ||
train, val = download_helpsteer() | ||
|
||
os.makedirs(output_dir, exist_ok=True) | ||
processed_train = process_dataset(train) | ||
with open(f"{output_dir}/train.jsonl", "w", encoding="utf-8") as f: | ||
for record in processed_train: | ||
f.write(json.dumps(record, ensure_ascii=False) + "\n") | ||
|
||
processed_val = process_dataset(val) | ||
with open(f"{output_dir}/val.jsonl", "w", encoding="utf-8") as f: | ||
for record in processed_val: | ||
f.write(json.dumps(record, ensure_ascii=False) + "\n") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"-dir", | ||
"--output_directory", | ||
required=True, | ||
help="folder to store the created train.jsonl and val.jsonl; will be created if it does not exist", | ||
) | ||
args = parser.parse_args() | ||
|
||
main(args.output_directory) |
Oops, something went wrong.