-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
netcdf preprocess: Parallelized workflow to crop original IMS netcdf …
…files to centered window at variable window size with luigi
- Loading branch information
1 parent
5c1cb84
commit 5987636
Showing
4 changed files
with
344 additions
and
49 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
[CropFiles] | ||
input_dir = "ims_1km" | ||
output_dir = "ims_netcdf_1km_cropped_4_000_000km_window" | ||
window_size = 4000 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
""" | ||
To run this as a Luigi DAG locally: | ||
``pixi run python icedyno/preprocess/crop.py`` | ||
You may have to enable toml support with luigi by setting an variable in your terminal, like ``export LUIGI_CONFIG_PARSER=toml`` | ||
""" | ||
import glob | ||
import os | ||
import pathlib | ||
|
||
import luigi | ||
import xarray as xr | ||
|
||
|
||
class CropFiles(luigi.Task): | ||
""" | ||
Crop IMS and MASIE NetCDF files from the center of their grids (where x, y == 1/2*sie.shape) based on input window_size. | ||
""" | ||
|
||
input_dir = luigi.Parameter() | ||
output_dir = luigi.Parameter() | ||
|
||
window_size = luigi.IntParameter(default=4000) | ||
year = luigi.IntParameter() | ||
|
||
def output(self) -> luigi.LocalTarget: | ||
return luigi.LocalTarget( | ||
os.path.join("data", self.output_dir, f"_SUCCESS_{self.year}") | ||
) | ||
|
||
def run(self) -> None: | ||
year_output_dir = os.path.join("data", self.output_dir, str(self.year)) | ||
if not os.path.exists(year_output_dir): | ||
os.makedirs(year_output_dir) | ||
|
||
input_cdf_files = glob.glob( | ||
os.path.join("data", self.input_dir, str(self.year), "*.nc") | ||
) | ||
|
||
for cdf_filepath in input_cdf_files: | ||
output_filename = ( | ||
os.path.join(year_output_dir, pathlib.Path(cdf_filepath).stem) | ||
+ f"_grid{self.window_size}.nc" | ||
) | ||
if os.path.exists(output_filename): | ||
print(cdf_filepath, "already on disk, skipping...") | ||
|
||
# Open the original NetCDF file | ||
ds = xr.open_dataset(cdf_filepath, engine="h5netcdf") | ||
|
||
x_coord = ds["x"].shape[0] // 2 | ||
y_coord = ds["y"].shape[0] // 2 | ||
window = self.window_size * 1000 | ||
|
||
cropped_ds = ds.sel( | ||
x=slice(x_coord - window, x_coord + window), | ||
y=slice(y_coord - window, y_coord + window), | ||
) | ||
|
||
# Write the cropped data to a new NetCDF file | ||
cropped_ds.to_netcdf(output_filename, engine="h5netcdf") | ||
|
||
|
||
if __name__ == "__main__": | ||
os.environ["LUIGI_CONFIG_PARSER"] = "toml" | ||
|
||
config_path = os.path.join("config", "preprocess_netcdf.toml") | ||
|
||
config = luigi.configuration.get_config(parser="toml") | ||
config.read(config_path) | ||
|
||
luigi.configuration.add_config_path(config_path) | ||
|
||
## Change acording to your number of cores | ||
n_workers = 10 | ||
years = range(2014, 2025) | ||
|
||
tasks = [CropFiles(year=year) for year in years] | ||
luigi.build(tasks, workers=n_workers, local_scheduler=True) |
Oops, something went wrong.