-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* initial changes to read in ak bk * read ak/bk * add xfail * remove input dir * further changes to unit tests * finish up test * add history * commit uncommited files * fix test comment * add input to top * read in data * read in netcdf file in eta mod * remove txt file * test * modify test and fix generate.py * remove emacs backup file * driver tests pass * fix helper.py * fix fv3core tests * fix physics test * fix grid tests * nullcommconfig * cleanup input * remove driver input * remove top level input * fix circular import problems * modify eta_file readin for test_restart_serial * comment out 91 test * rm safety checks * revert diagnostics.py * restore driver.py * revert initialization.py * restore state.py * restore analytic_init.py * restore init_utils.py and analytic_init.py * restore c_sw.py * d2a2c_vect.py * restore fv3core/stensils * restore translate_fvdynamics * restore physics/stencils * restore stencils * remove circular dependency * use pytest parametrize * cleanup generation.py * fstrinngs * add eta_file to MetricTerm init * remove eta_file argument in new_from_metric_terms and geos_wrapper * use pytest parametrize for the xfail tests * use pytest parametrize for the xfail tests * fix geos_wrapper and grid * fix tests * fstring * add test comments * fix util/HISTORY.md * fix comments * remove __init__.py from tests/main/grid * add jupyter notebooks to generate eta files * generate ak,bk,ptop on metricterm init * fix tests * exploit np.all in eta mod * remove tests/main/grid/input * update ci * test * remove input * edit ci yaml * remove push --------- Co-authored-by: mlee03 <[email protected]>
- Loading branch information
Showing
19 changed files
with
484 additions
and
850 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2c056479", | ||
"metadata": { | ||
"lines_to_next_cell": 0 | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8c96fbff", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import netCDF4 as nc\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6827b1b5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\"\"\"\n", | ||
"This notebook uses the python netCDF4 module\n", | ||
"to create an eta_file containg\n", | ||
"ak and bk coefficients for km=79\n", | ||
"\"\"\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "45d4a704", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#create a Dataset instance\n", | ||
"coefficients = nc.Dataset(\"eta79.nc\", \"w\", format=\"NETCDF4\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b964a014", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Set dimensionsion\n", | ||
"km = coefficients.createDimension(\"km\", 80)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d51c395f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Create ak and bk variables\n", | ||
"ak = coefficients.createVariable(\"ak\", np.float64, (\"km\"))\n", | ||
"bk = coefficients.createVariable(\"bk\", np.float64, (\"km\"))\n", | ||
"ak.units=\"\"\n", | ||
"bk.units=\"\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6723352e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Assign and write out values of ak\n", | ||
"ak[:] = np.array(\n", | ||
" [ 3.000000e+02, 6.467159e+02, 1.045222e+03, 1.469188e+03, 1.897829e+03,\n", | ||
" 2.325385e+03, 2.754396e+03, 3.191294e+03, 3.648332e+03, 4.135675e+03,\n", | ||
" 4.668282e+03, 5.247940e+03, 5.876271e+03, 6.554716e+03, 7.284521e+03,\n", | ||
" 8.066738e+03, 8.902188e+03, 9.791482e+03, 1.073499e+04, 1.162625e+04,\n", | ||
" 1.237212e+04, 1.299041e+04, 1.349629e+04, 1.390277e+04, 1.422098e+04,\n", | ||
" 1.446058e+04, 1.462993e+04, 1.473633e+04, 1.478617e+04, 1.478511e+04,\n", | ||
" 1.473812e+04, 1.464966e+04, 1.452370e+04, 1.436382e+04, 1.417324e+04,\n", | ||
" 1.395491e+04, 1.371148e+04, 1.344540e+04, 1.315890e+04, 1.285407e+04,\n", | ||
" 1.253280e+04, 1.219685e+04, 1.184788e+04, 1.148739e+04, 1.111682e+04,\n", | ||
" 1.073748e+04, 1.035062e+04, 9.957395e+03, 9.558875e+03, 9.156069e+03,\n", | ||
" 8.749922e+03, 8.341315e+03, 7.931065e+03, 7.519942e+03, 7.108648e+03,\n", | ||
" 6.698281e+03, 6.290007e+03, 5.884984e+03, 5.484372e+03, 5.089319e+03,\n", | ||
" 4.700960e+03, 4.320421e+03, 3.948807e+03, 3.587201e+03, 3.236666e+03,\n", | ||
" 2.898237e+03, 2.572912e+03, 2.261667e+03, 1.965424e+03, 1.685079e+03,\n", | ||
" 1.421479e+03, 1.175419e+03, 9.476516e+02, 7.388688e+02, 5.497130e+02,\n", | ||
" 3.807626e+02, 2.325417e+02, 1.054810e+02, -8.381903e-04, 0.000000e+00] )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "195c9ef5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Assign and write out values of bk \n", | ||
"bk[:] = np.array(\n", | ||
" [ 0., 0., 0., 0., 0., 0.,\n", | ||
" 0., 0., 0., 0., 0., 0.,\n", | ||
" 0., 0., 0., 0., 0., 0.,\n", | ||
" 0., 0.00106595, 0.00412866, 0.00900663, 0.01554263, 0.02359921,\n", | ||
" 0.03305481, 0.0438012, 0.05574095, 0.06878554, 0.08285347, 0.09786981,\n", | ||
" 0.1137643, 0.130471, 0.1479275, 0.1660746, 0.1848558, 0.2042166,\n", | ||
" 0.2241053, 0.2444716, 0.2652672, 0.286445, 0.3079604, 0.3297701,\n", | ||
" 0.351832, 0.3741062, 0.3965532, 0.4191364, 0.4418194, 0.4645682,\n", | ||
" 0.48735, 0.5101338, 0.5328897, 0.5555894, 0.5782067, 0.6007158,\n", | ||
" 0.6230936, 0.6452944, 0.6672683, 0.6889648, 0.7103333, 0.7313231,\n", | ||
" 0.7518838, 0.7719651, 0.7915173, 0.8104913, 0.828839, 0.846513,\n", | ||
" 0.8634676, 0.8796583, 0.8950421, 0.9095779, 0.9232264, 0.9359506,\n", | ||
" 0.9477157, 0.9584892, 0.9682413, 0.9769447, 0.9845753, 0.9911126,\n", | ||
" 0.9965372, 1. ] )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c0f3bd9d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Close netcdf file\n", | ||
"coefficients.close()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"jupytext": { | ||
"cell_metadata_filter": "-all", | ||
"executable": "/usr/bin/env python3", | ||
"main_language": "python", | ||
"notebook_metadata_filter": "-all" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6dc5fe4c", | ||
"metadata": { | ||
"lines_to_next_cell": 0 | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "81be9a15", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import xarray as xr" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c74c6c07", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\"\"\"\n", | ||
"This notebook uses the python xarray module\n", | ||
"to create an eta_file containg\n", | ||
"ak and bk coefficients for km=79\n", | ||
"\"\"\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f72c5d5b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Assign ak data\n", | ||
"ak=np.array(\n", | ||
" [ 3.000000e+02, 6.467159e+02, 1.045222e+03, 1.469188e+03, 1.897829e+03,\n", | ||
" 2.325385e+03, 2.754396e+03, 3.191294e+03, 3.648332e+03, 4.135675e+03,\n", | ||
" 4.668282e+03, 5.247940e+03, 5.876271e+03, 6.554716e+03, 7.284521e+03,\n", | ||
" 8.066738e+03, 8.902188e+03, 9.791482e+03, 1.073499e+04, 1.162625e+04,\n", | ||
" 1.237212e+04, 1.299041e+04, 1.349629e+04, 1.390277e+04, 1.422098e+04,\n", | ||
" 1.446058e+04, 1.462993e+04, 1.473633e+04, 1.478617e+04, 1.478511e+04,\n", | ||
" 1.473812e+04, 1.464966e+04, 1.452370e+04, 1.436382e+04, 1.417324e+04,\n", | ||
" 1.395491e+04, 1.371148e+04, 1.344540e+04, 1.315890e+04, 1.285407e+04,\n", | ||
" 1.253280e+04, 1.219685e+04, 1.184788e+04, 1.148739e+04, 1.111682e+04,\n", | ||
" 1.073748e+04, 1.035062e+04, 9.957395e+03, 9.558875e+03, 9.156069e+03,\n", | ||
" 8.749922e+03, 8.341315e+03, 7.931065e+03, 7.519942e+03, 7.108648e+03,\n", | ||
" 6.698281e+03, 6.290007e+03, 5.884984e+03, 5.484372e+03, 5.089319e+03,\n", | ||
" 4.700960e+03, 4.320421e+03, 3.948807e+03, 3.587201e+03, 3.236666e+03,\n", | ||
" 2.898237e+03, 2.572912e+03, 2.261667e+03, 1.965424e+03, 1.685079e+03,\n", | ||
" 1.421479e+03, 1.175419e+03, 9.476516e+02, 7.388688e+02, 5.497130e+02,\n", | ||
" 3.807626e+02, 2.325417e+02, 1.054810e+02, -8.381903e-04, 0.000000e+00] )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f5b85c7e", | ||
"metadata": { | ||
"lines_to_next_cell": 2 | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"#Assign bk data\n", | ||
"bk=np.array(\n", | ||
" [ 0., 0., 0., 0., 0., 0.,\n", | ||
" 0., 0., 0., 0., 0., 0.,\n", | ||
" 0., 0., 0., 0., 0., 0.,\n", | ||
" 0., 0.00106595, 0.00412866, 0.00900663, 0.01554263, 0.02359921,\n", | ||
" 0.03305481, 0.0438012, 0.05574095, 0.06878554, 0.08285347, 0.09786981,\n", | ||
" 0.1137643, 0.130471, 0.1479275, 0.1660746, 0.1848558, 0.2042166,\n", | ||
" 0.2241053, 0.2444716, 0.2652672, 0.286445, 0.3079604, 0.3297701,\n", | ||
" 0.351832, 0.3741062, 0.3965532, 0.4191364, 0.4418194, 0.4645682,\n", | ||
" 0.48735, 0.5101338, 0.5328897, 0.5555894, 0.5782067, 0.6007158,\n", | ||
" 0.6230936, 0.6452944, 0.6672683, 0.6889648, 0.7103333, 0.7313231,\n", | ||
" 0.7518838, 0.7719651, 0.7915173, 0.8104913, 0.828839, 0.846513,\n", | ||
" 0.8634676, 0.8796583, 0.8950421, 0.9095779, 0.9232264, 0.9359506,\n", | ||
" 0.9477157, 0.9584892, 0.9682413, 0.9769447, 0.9845753, 0.9911126,\n", | ||
" 0.9965372, 1. ] )" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c5450f7f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Create a Dataset instance\n", | ||
"coefficients = xr.Dataset(\n", | ||
" { \"ak\": ([\"km1\"], ak),\n", | ||
" \"bk\": ([\"km1\"], bk) \n", | ||
" })" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5a0e5487", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Set attributes for each variable\n", | ||
"coefficients[\"ak\"].attrs[\"units\"]=\"\"\n", | ||
"coefficients[\"bk\"].attrs[\"units\"]=\"\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "612b0134", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#Write netcdf file\n", | ||
"coefficients.to_netcdf(\"eta79.nc\")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"jupytext": { | ||
"cell_metadata_filter": "-all", | ||
"executable": "/usr/bin/env python3", | ||
"main_language": "python", | ||
"notebook_metadata_filter": "-all" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.