-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
924c59f
commit cf77ce8
Showing
2 changed files
with
154 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from vllm import LLM, SamplingParams" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"prompts = [\n", | ||
" \"Tell me a joke.\"\n", | ||
"]\n", | ||
"params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=1024)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"os.environ[\"HF_TOKEN\"] = \"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\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"WARNING 09-27 11:20:50 config.py:319] bitsandbytes quantization is not fully optimized yet. The speed can be slower than non-quantized models.\n", | ||
"INFO 09-27 11:20:50 llm_engine.py:226] Initializing an LLM engine (v0.6.1.dev238+ge2c6e0a82) with config: model='unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit', speculative_config=None, tokenizer='unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=4096, download_dir=None, load_format=LoadFormat.BITSANDBYTES, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit, use_v2_block_manager=False, num_scheduler_steps=1, multi_step_stream_outputs=False, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=False, mm_processor_kwargs=None)\n", | ||
"INFO 09-27 11:20:51 model_runner.py:1014] Starting to load model unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit...\n", | ||
"INFO 09-27 11:20:51 loader.py:1014] Loading weights with BitsAndBytes quantization. May take a while ...\n", | ||
"INFO 09-27 11:20:51 weight_utils.py:242] Using model weights format ['*.safetensors']\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "1591f28b46054d24890b33e117b5ddc4", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Loading safetensors checkpoint shards: 0% Completed | 0/2 [00:00<?, ?it/s]\n" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "adb6870fac6f48c08b3af57649a2fe68", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Loading safetensors checkpoint shards: 0% Completed | 0/2 [00:00<?, ?it/s]\n" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"INFO 09-27 11:20:55 model_runner.py:1025] Loading model weights took 8.0501 GB\n", | ||
"INFO 09-27 11:20:57 gpu_executor.py:122] # GPU blocks: 382, # CPU blocks: 1638\n", | ||
"INFO 09-27 11:21:01 model_runner.py:1329] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.\n", | ||
"INFO 09-27 11:21:01 model_runner.py:1333] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.\n", | ||
"INFO 09-27 11:21:23 model_runner.py:1456] Graph capturing finished in 22 secs.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"llm = LLM(model=\"unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit\", quantization=\"bitsandbytes\", load_format=\"bitsandbytes\", max_model_len=4096)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Processed prompts: 100%|██████████| 1/1 [00:00<00:00, 1.31it/s, est. speed input: 7.88 toks/s, output: 36.77 toks/s]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"outputs = llm.generate(prompts, params)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[RequestOutput(request_id=0, prompt='Tell me a joke.', prompt_token_ids=[1, 69839, 1639, 1261, 53052, 1046], encoder_prompt=None, encoder_prompt_token_ids=None, prompt_logprobs=None, outputs=[CompletionOutput(index=0, text=' I’m not good at jokes, but I’ll try my best.\\n\\nWhat do you call a fake noodle? An impasta.', token_ids=(1362, 6135, 1605, 3683, 1513, 88916, 1044, 1809, 1362, 7372, 3352, 2036, 3560, 1338, 7493, 1653, 1636, 3690, 1261, 36840, 96572, 1282, 1063, 2048, 3918, 5693, 1046, 2), cumulative_logprob=None, logprobs=None, finish_reason=stop, stop_reason=None)], finished=True, metrics=RequestMetrics(arrival_time=1727432483.3084419, last_token_time=1727432483.3084419, first_scheduled_time=1727432483.311076, first_token_time=1727432483.4521985, time_in_queue=0.0026340484619140625, finished_time=1727432484.0507092, scheduler_time=0.001698089001365588, model_forward_time=None, model_execute_time=None), lora_request=None)]" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"outputs" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": ".venv", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters