Skip to content

MyoungHaSong/Tensorflow_Pix2Pix

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pix2Pix in Tensorflow

Study Friendly Implementation of Pix2Pix in Tensorflow

[Paper | Post(in Korean) | Pytorch Version]

1. Environments

  • Windows 10
  • Python 3.5.3 (Anaconda)
  • Tensorflow 1.4.0
  • Numpy 1.13.1

2. Code Description

  • train.py: Main Code
  • test.py: Test Code after Training
  • model.py: Generator and Discriminator
  • dbread.py: My Own Code for Reading Database

3. Networks and Parameters

3.1 Hyper-Parameters

  • Image Size = 256x256 (Resized)
  • Batch Size = 1 or 4
  • Learning Rate = 0.0002
  • Adam_beta1 = 0.5
  • Lambda_A = 100 (Weight of L1-Loss)

Detail Recommandations for Each Dataset are on the Last Page of Original Paper

3.2 Generator Networks (network.py)

3.3 Discriminator Networks (network.py)

4. Database

4.1 DB Download

download-dataset.py is from this github link

  • facades: python database/download-dataset.py facades
  • cityscapes: python database/download-dataset.py cityscapes
  • maps: python database/download-dataset.py maps
  • edges2shoes: python database/download-dataset.py edges2shoes
  • edges2handbags: python database/download-dataset.py edges2handbags

4.2 DB Setting

  • You just have to get a text file that contains all directories of your image data(filelist.txt).
  • You can make filelist with following command.
cd <database_dir>
dir /b /s > filelist.txt
  • Then you must open 'filelist.txt' and delete line 'your_db_dir/filelist.txt'.

5. Train

python train.py --train filelist.txt
  • --train: Directory of the Text File of Train Filelist
  • --out_dir: Directory to Save your Train Result
  • --epochs: Num of Epochs You Want
  • --batch_size: Batch Size You Want
  • --direction: 'AtoB' or 'BtoA'

After finish training, saved models are in the ./output/checkpoint directory and the Train Results are saved in ./output/result.(default)

6. Test

python test.py --train filelist.txt
  • --test: Directory of the Text File of Test Filelist
  • --out_dir: Directory to Save your Train Result
  • --ckpt_dir: Directory of Trained Model
  • --visnum: Number of Visualization in an Image File
  • --direction: 'AtoB' or 'BtoA'

Test results will be saved in ./output_test(default)

7. Results

[Input | Generated | Ground Truth]

Edges to Shoes (8 Epochs)

15 Epochs (which is in the Paper) will give better results

Maps to Aerials (200 Epochs)

Architectural labels to Photo (200 Epochs)

About

Study Friendly Implementation of Pix2Pix in Tensorflow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%