-
-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cbfa6c9
commit 0fa7993
Showing
7 changed files
with
26 additions
and
6 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
12 changes: 12 additions & 0 deletions
12
content/publication/buecherl-decoding-genetic-circuit-failures-2024/cite.bib
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
@phdthesis{DecodingGeneticCircuitFailures_buecherl_2024, | ||
abstract = {Synthetic biology resides at the nexus of engineering and biology, employing diverse ap- proaches to engineer biological systems. These systems can be as simple as DNA sequences, bio- chemical reactions, or more abstracted through control theory or digital logic, among other ways. Similar to other engineering disciplines, for real-world applications, the designed systems must ex- hibit robustness and adaptability to environmental changes beyond controlled laboratory settings. This dissertation focuses on genetic constructs viewed specifically as digital logic genetic circuits, examining their implementation and failure behavior. It aims to elucidate and analyze various failure modes and proposes analytical methods to enhance genetic circuit robustness. This work defines genetic circuit failure, where deviations from expected output are deemed as unexpected and faulty. Such deviations may stem from failures at the cellular level or from flaws in the circuit’s logic implementation or Boolean function. Subsequently, this dissertation develops computational methods to predict circuit behavior, employing diverse analysis techniques such as ordinary differ- ential equation analysis, stochastic simulation algorithms, and stochastic model verification. These methodologies enable the prediction of the likelihood of failure occurrence. Furthermore, this dis- sertation compares different computational modeling techniques to assess the effort required for genetic circuit analysis. Finally, experimental validation is provided for a predicted circuit failure, demonstrating the practical application of the proposed methodologies.}, | ||
address = {Boulder, Colorado, USA}, | ||
author = {Buecherl, Lukas}, | ||
file = {}, | ||
language = {en}, | ||
month = {March}, | ||
school = {University of Colorado Boulder}, | ||
title = {Decoding Genetic Circuit Failures: Analyzing Static and Dynamic Failures in Genetic Circuitry}, | ||
type = {Ph.D. Thesis}, | ||
year = {2024} | ||
} |
10 changes: 10 additions & 0 deletions
10
content/publication/buecherl-decoding-genetic-circuit-failures-2024/index.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
--- | ||
title: "Decoding Genetic Circuit Failures: Analyzing Static and Dynamic Failures in Genetic Circuitry" | ||
date: 2024-03-19 | ||
publishDate: 2024 | ||
authors: ["Lukas Buecherl"] | ||
publication_types: ["7"] | ||
abstract: "Synthetic biology resides at the nexus of engineering and biology, employing diverse ap- proaches to engineer biological systems. These systems can be as simple as DNA sequences, bio- chemical reactions, or more abstracted through control theory or digital logic, among other ways. Similar to other engineering disciplines, for real-world applications, the designed systems must ex- hibit robustness and adaptability to environmental changes beyond controlled laboratory settings. This dissertation focuses on genetic constructs viewed specifically as digital logic genetic circuits, examining their implementation and failure behavior. It aims to elucidate and analyze various failure modes and proposes analytical methods to enhance genetic circuit robustness. This work defines genetic circuit failure, where deviations from expected output are deemed as unexpected and faulty. Such deviations may stem from failures at the cellular level or from flaws in the circuit’s logic implementation or Boolean function. Subsequently, this dissertation develops computational methods to predict circuit behavior, employing diverse analysis techniques such as ordinary differ- ential equation analysis, stochastic simulation algorithms, and stochastic model verification. These methodologies enable the prediction of the likelihood of failure occurrence. Furthermore, this dis- sertation compares different computational modeling techniques to assess the effort required for genetic circuit analysis. Finally, experimental validation is provided for a predicted circuit failure, demonstrating the practical application of the proposed methodologies." | ||
featured: false | ||
publication: "" | ||
--- |