forked from comfyanonymous/ComfyUI
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
15c39ea
commit 4c82741
Showing
2 changed files
with
210 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
import math | ||
from typing import List, Optional, Tuple | ||
|
||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
from einops import rearrange | ||
from torch import Tensor | ||
|
||
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch | ||
|
||
|
||
class ControlNetEmbedder(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
img_size: int, | ||
patch_size: int, | ||
in_chans: int, | ||
attention_head_dim: int, | ||
num_attention_heads: int, | ||
adm_in_channels: int, | ||
num_layers: int, | ||
main_model_double: int, | ||
double_y_emb: bool, | ||
device: torch.device, | ||
dtype: torch.dtype, | ||
pos_embed_max_size: Optional[int] = None, | ||
operations = None, | ||
): | ||
super().__init__() | ||
self.main_model_double = main_model_double | ||
self.dtype = dtype | ||
self.hidden_size = num_attention_heads * attention_head_dim | ||
self.patch_size = patch_size | ||
self.x_embedder = PatchEmbed( | ||
img_size=img_size, | ||
patch_size=patch_size, | ||
in_chans=in_chans, | ||
embed_dim=self.hidden_size, | ||
strict_img_size=pos_embed_max_size is None, | ||
device=device, | ||
dtype=dtype, | ||
operations=operations, | ||
) | ||
|
||
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations) | ||
|
||
self.double_y_emb = double_y_emb | ||
if self.double_y_emb: | ||
self.orig_y_embedder = VectorEmbedder( | ||
adm_in_channels, self.hidden_size, dtype, device, operations=operations | ||
) | ||
self.y_embedder = VectorEmbedder( | ||
self.hidden_size, self.hidden_size, dtype, device, operations=operations | ||
) | ||
else: | ||
self.y_embedder = VectorEmbedder( | ||
adm_in_channels, self.hidden_size, dtype, device, operations=operations | ||
) | ||
|
||
self.transformer_blocks = nn.ModuleList( | ||
DismantledBlock( | ||
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True, | ||
dtype=dtype, device=device, operations=operations | ||
) | ||
for _ in range(num_layers) | ||
) | ||
|
||
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features | ||
# TODO double check this logic when 8b | ||
self.use_y_embedder = True | ||
|
||
self.controlnet_blocks = nn.ModuleList([]) | ||
for _ in range(len(self.transformer_blocks)): | ||
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device) | ||
self.controlnet_blocks.append(controlnet_block) | ||
|
||
self.pos_embed_input = PatchEmbed( | ||
img_size=img_size, | ||
patch_size=patch_size, | ||
in_chans=in_chans, | ||
embed_dim=self.hidden_size, | ||
strict_img_size=False, | ||
device=device, | ||
dtype=dtype, | ||
operations=operations, | ||
) | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
timesteps: torch.Tensor, | ||
y: Optional[torch.Tensor] = None, | ||
context: Optional[torch.Tensor] = None, | ||
hint = None, | ||
) -> Tuple[Tensor, List[Tensor]]: | ||
x_shape = list(x.shape) | ||
x = self.x_embedder(x) | ||
if not self.double_y_emb: | ||
h = (x_shape[-2] + 1) // self.patch_size | ||
w = (x_shape[-1] + 1) // self.patch_size | ||
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device) | ||
c = self.t_embedder(timesteps, dtype=x.dtype) | ||
if y is not None and self.y_embedder is not None: | ||
if self.double_y_emb: | ||
y = self.orig_y_embedder(y) | ||
y = self.y_embedder(y) | ||
c = c + y | ||
|
||
x = x + self.pos_embed_input(hint) | ||
|
||
block_out = () | ||
|
||
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks)) | ||
for i in range(len(self.transformer_blocks)): | ||
out = self.transformer_blocks[i](x, c) | ||
if not self.double_y_emb: | ||
x = out | ||
block_out += (self.controlnet_blocks[i](out),) * repeat | ||
|
||
return {"output": block_out} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters