Skip to content

MasoudMo/pytorch_gcn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch Implementation of Graph Convolutional Network for Edge Prediction

Summary

This repository provides a PyTorch implementation of Stanford's tutorial on GCN for edge prediction found at: Graph Convolutional Prediction of Protein Interactions in Yeast

Requirements

  • numpy~=1.20.2
  • scipy~=1.6.3
  • networkx~=2.5.1
  • torch~=1.8.1
  • sklearn~=0.0
  • scikit-learn~=0.24.2

Usage

The train.py script trains the model for a specified number of epochs and performs inference at the end of training on the test set. The dataset used for this experiment is provided in the /data folder due its manageable size.

To run the script use the following command in the /src directory:

python train.py --input_path <path to dataset> --epochs <number of training epochs> --learning_rate <well, LR :)> --model_path <path to save the trained model to> --hidden_dim <hidden layer dimension> --output_dim <graph embedding dimension>

About

A PyTorch implementation of Stanford's Graph Convolutional Prediction of Protein Interactions in Yeast (http://snap.stanford.edu/deepnetbio-ismb/ipynb/Graph+Convolutional+Prediction+of+Protein+Interactions+in+Yeast.html)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages