Skip to content

Commit

Permalink
Merge pull request #838 from xylar/update-to-numpy-2.0
Browse files Browse the repository at this point in the history
Update to compass 1.4.0-alpha.4, numpy >=2.0, mpas_tools 0.34.1, matplotlib >=3.9.0
  • Loading branch information
xylar authored Jul 4, 2024
2 parents ad3647a + 252b615 commit d75450b
Show file tree
Hide file tree
Showing 9 changed files with 118 additions and 105 deletions.
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
from compass.testcase import TestCase
from compass.landice.tests.calving_dt_convergence.run_model import RunModel
import matplotlib.cm
import matplotlib.pyplot as plt
import netCDF4
# from compass.validate import compare_variables # not currently used
import numpy
import netCDF4
import matplotlib.pyplot as plt
import matplotlib.cm

from compass.landice.tests.calving_dt_convergence.run_model import RunModel
from compass.testcase import TestCase


class DtConvergenceTest(TestCase):
Expand All @@ -28,7 +29,7 @@ def __init__(self, test_group, mesh, calving, velo):
test_group : compass.landice.tests.calving_dt_convergence.CalvingDtConvergence
The test group that this test case belongs to
"""
""" # noqa: E501
self.name = f'calving_dt_convergence_test_{mesh}_{calving}_{velo}'
subdir = f'{mesh}.{calving}.{velo}'
super().__init__(test_group=test_group, name=self.name, subdir=subdir)
Expand Down Expand Up @@ -77,7 +78,8 @@ def validate(self):
ax[3].set_ylabel('# warnings', color='c')
ax2 = ax[3].twinx()
ax2.set_ylabel('fraction with warnings', color='g')
colors = matplotlib.cm.jet(numpy.linspace(0, 1, len(self.fractions)))
jet = matplotlib.colormaps['jet']
colors = jet(numpy.linspace(0, 1, len(self.fractions)))
nWarn = numpy.zeros([len(self.fractions)])
nTimesteps = numpy.zeros([len(self.fractions)])

Expand All @@ -91,7 +93,7 @@ def validate(self):
ax[0].plot(yr[1:], calv[1:], '-', label=f'{frac:.2f}',
color=colors[i])

ax[1].plot(yr[1:], (calv[1:]*deltat[1:]).cumsum(), '-',
ax[1].plot(yr[1:], (calv[1:] * deltat[1:]).cumsum(), '-',
color=colors[i])

ratio = f.variables['dtCalvingCFLratio'][:]
Expand All @@ -107,7 +109,7 @@ def validate(self):
nWarn[i] = logcontents.count("WARNING: Failed to ablate")
nTimesteps[i] = logcontents.count("Starting timestep number")
ax[3].plot(frac, nWarn[i], 'co')
ax2.plot(frac, nWarn[i]/nTimesteps[i], 'gx')
ax2.plot(frac, nWarn[i] / nTimesteps[i], 'gx')

f.close()
i += 1
Expand Down
45 changes: 25 additions & 20 deletions compass/landice/tests/eismint2/standard_experiments/visualize.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import datetime
import netCDF4

import matplotlib.pyplot as plt
import netCDF4
import numpy as np
from scipy.interpolate import griddata

Expand All @@ -19,7 +20,7 @@ def __init__(self, test_case):
----------
test_case : compass.landice.tests.eismint2.standard_experiments.StandardExperiments
The test case this step belongs to
"""
""" # noqa: E501
super().__init__(test_case=test_case, name='visualize')

# depending on settings, this may produce no outputs, so we won't add
Expand Down Expand Up @@ -70,8 +71,8 @@ def visualize_eismint2(config, logger, experiment):

# open supplied MPAS output file and get variables needed
filein = netCDF4.Dataset(filename, 'r')
xCell = filein.variables['xCell'][:]/1000.0
yCell = filein.variables['yCell'][:]/1000.0
xCell = filein.variables['xCell'][:] / 1000.0
yCell = filein.variables['yCell'][:] / 1000.0
xtime = filein.variables['xtime'][:]
nCells = len(filein.dimensions['nCells'])
nVertLevels = len(filein.dimensions['nVertLevels'])
Expand Down Expand Up @@ -103,16 +104,17 @@ def visualize_eismint2(config, logger, experiment):

# make an educated guess about how big the markers should be.
if nCells**0.5 < 100.0:
markersize = max(int(round(3600.0/(nCells**0.5))), 1)
markersize = max(int(round(3600.0 / (nCells**0.5))), 1)
# use hexes if the points are big enough, otherwise just dots
markershape = 'h'
else:
markersize = max(int(round(1800.0/(nCells**0.5))), 1)
markersize = max(int(round(1800.0 / (nCells**0.5))), 1)
markershape = '.'
logger.info('Using a markersize of {}'.format(markersize))

fig = plt.figure(1, facecolor='w')
fig.suptitle('Payne et al. Fig. 1, 3, 6, 9, or 11', fontsize=10, fontweight='bold')
fig.suptitle('Payne et al. Fig. 1, 3, 6, 9, or 11', fontsize=10,
fontweight='bold')

iceIndices = np.where(thickness[timelev, :] > 10.0)[0]
plt.scatter(xCell[iceIndices], yCell[iceIndices], markersize,
Expand All @@ -138,7 +140,8 @@ def visualize_eismint2(config, logger, experiment):
plt.savefig('EISMINT2-{}-basaltemp.png'.format(experiment), dpi=150)

# ================
# STEADY STATE MAPS - panels b and c are switched and with incorrect units in the paper
# STEADY STATE MAPS - panels b and c are switched and with incorrect
# units in the paper
# ================
fig = plt.figure(2, facecolor='w', figsize=(12, 6), dpi=72)
fig.suptitle('Payne et al. Fig. 2 or 4', fontsize=10, fontweight='bold')
Expand All @@ -152,7 +155,7 @@ def visualize_eismint2(config, logger, experiment):
edgecolors='none')

# add contours of ice thickness over the top
contour_intervals = np.linspace(0.0, 5000.0, int(5000.0/250.0)+1)
contour_intervals = np.linspace(0.0, 5000.0, int(5000.0 / 250.0) + 1)
_contour_mpas(thickness[timelev, :], nCells, xCell, yCell,
contour_levs=contour_intervals)

Expand All @@ -167,17 +170,17 @@ def visualize_eismint2(config, logger, experiment):

flux = np.zeros((nCells,))
for k in range(nVertLevels):
speedLevel = (uReconstructX[timelev, :, k:k+2].mean(axis=1)**2 +
uReconstructY[timelev, :, k:k+2].mean(axis=1)**2)**0.5
speedLevel = (uReconstructX[timelev, :, k:k + 2].mean(axis=1)**2 +
uReconstructY[timelev, :, k:k + 2].mean(axis=1)**2)**0.5
flux += speedLevel * thickness[timelev, :] * layerThicknessFractions[k]

plt.scatter(xCell[iceIndices], yCell[iceIndices], markersize,
c=np.array([[0.8, 0.8, 0.8], ]), marker=markershape,
edgecolors='none')

# add contours over the top
contour_intervals = np.linspace(0.0, 20.0, 11)
_contour_mpas(flux * 3600.0*24.0*365.0 / 10000.0, nCells, xCell, yCell,
contour_intervals = np.linspace(0.0, 20.0, 11)
_contour_mpas(flux * 3600.0 * 24.0 * 365.0 / 10000.0, nCells, xCell, yCell,
contour_levs=contour_intervals)
ax.set_aspect('equal')
plt.title('Final flux (m$^2$ a$^{-1}$ / 10000)')
Expand All @@ -199,7 +202,7 @@ def visualize_eismint2(config, logger, experiment):
if flwa[timelev, :, :].max() > 0.0:
# NOT SURE WHICH LEVEL FLWA SHOULD COME FROM - so taking column average
_contour_mpas(
flwa[timelev, :, :].mean(axis=1) * 3600.0*24.0*365.0 / 1.0e-17,
flwa[timelev, :, :].mean(axis=1) * 3600.0 * 24.0 * 365.0 / 1.0e-17,
nCells, xCell, yCell)
ax.set_aspect('equal')
# Note: the paper's figure claims units of 10$^{-25}$ Pa$^{-3}$ a$^{-1}$
Expand All @@ -215,7 +218,8 @@ def visualize_eismint2(config, logger, experiment):
# DIVIDE EVOLUTION TIME SERIES
# ================
fig = plt.figure(3, facecolor='w')
fig.suptitle('Payne et al. Fig. 5, 7, or 8', fontsize=10, fontweight='bold')
fig.suptitle('Payne et al. Fig. 5, 7, or 8', fontsize=10,
fontweight='bold')

# get indices for given time
if experiment == 'b':
Expand All @@ -232,14 +236,15 @@ def visualize_eismint2(config, logger, experiment):
# panel a - thickness
fig.add_subplot(211)
timeInd = np.nonzero(years <= endTime)[0][0:]
plt.plot(years[timeInd]/1000.0, thickness[timeInd, divideIndex], 'k.-')
plt.plot(years[timeInd] / 1000.0, thickness[timeInd, divideIndex], 'k.-')
plt.ylabel('Thickness (m)')

# panel b - basal temperature
fig.add_subplot(212)
# skip the first index cause basalTemperature isn't calculated then
timeInd = np.nonzero(years <= endTime)[0][1:]
plt.plot(years[timeInd]/1000.0, basalTemperature[timeInd, divideIndex], 'k.-')
plt.plot(years[timeInd] / 1000.0, basalTemperature[timeInd, divideIndex],
'k.-')
plt.ylabel('Basal temperature (K)')
plt.xlabel('Time (kyr)')

Expand Down Expand Up @@ -296,8 +301,8 @@ def visualize_eismint2(config, logger, experiment):
'min/mean/max of community', fontsize=10, fontweight='bold')

fig.add_subplot(151)
volume = ((thickness[timelev, iceIndices] * areaCell[iceIndices]).sum()
/ 1000.0**3 / 10.0**6)
volume = ((thickness[timelev, iceIndices] * areaCell[iceIndices]).sum() /
1000.0**3 / 10.0**6)
# benchmark results
plt.plot(np.zeros((3,)), bench['volume'], 'k*')
if bench['stattype'] == 'relative':
Expand Down Expand Up @@ -473,7 +478,7 @@ def _contour_mpas(field, nCells, xCell, yCell, contour_levs=None):
if len(contour_levs) == 1:
im = plt.contour(xi, yi, zi)
else:
im = plt.contour(xi, yi, zi, contour_levs, cmap=plt.cm.jet)
im = plt.contour(xi, yi, zi, contour_levs, cmap=plt.get_cmap('jet'))

# to see the raw data on top
# plt.scatter(xCell, yCell, c=temperature[timelev,:,-1], s=100,
Expand Down
2 changes: 1 addition & 1 deletion compass/landice/tests/ensemble_generator/plot_ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -522,7 +522,7 @@ def filter_run():

if plot_maps:
# axMaps2.plot(GLX, GLY, '.')
axMaps2.hist2d(GLX, GLY, (50, 50), cmap=plt.cm.jet)
axMaps2.hist2d(GLX, GLY, (50, 50), cmap=plt.get_cmap('jet'))
figMaps.savefig('figure_maps.png')

if plot_time_series:
Expand Down
29 changes: 14 additions & 15 deletions compass/ocean/tests/global_convergence/cosine_bell/analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,21 +131,20 @@ def rmse(self, mesh_name):
# find time since the beginning of run
ds = xr.open_dataset(f'{mesh_name}_output.nc')
for j in range(len(ds.xtime)):
tt = str(ds.xtime[j].values)
tt.rfind('_')
DY = float(tt[10:12]) - 1
if DY == pd:
time_string = str(np.strings.decode(ds.xtime[j].values))
day = float(time_string[8:10]) - 1
if day == pd:
sliceTime = j
break
HR = float(tt[13:15])
MN = float(tt[16:18])
t = 86400.0 * DY + HR * 3600. + MN
hour = float(time_string[11:13])
min = float(time_string[14:16])
t = 86400.0 * day + hour * 3600. + min
# find new location of blob center
# center is based on equatorial velocity
R = init.sphere_radius
distTrav = 2.0 * 3.14159265 * R / (86400.0 * pd) * t
r = init.sphere_radius
distTrav = 2.0 * np.pi * r / (86400.0 * pd) * t
# distance in radians is
distRad = distTrav / R
distRad = distTrav / r
newLon = lonCent + distRad
if newLon > 2.0 * np.pi:
newLon -= 2.0 * np.pi
Expand All @@ -154,17 +153,17 @@ def rmse(self, mesh_name):
tracer = np.zeros_like(init.tracer1[0, :, 0].values)
latC = init.latCell.values
lonC = init.lonCell.values
temp = R * np.arccos(np.sin(latCent) * np.sin(latC) +
np.cos(latCent) * np.cos(latC) * np.cos(
lonC - newLon))
temp = r * np.arccos(np.sin(latCent) * np.sin(latC) +
(np.cos(latCent) * np.cos(latC) *
np.cos(lonC - newLon)))
mask = temp < radius
tracer[mask] = psi0 / 2.0 * (
1.0 + np.cos(3.1415926 * temp[mask] / radius))
1.0 + np.cos(np.pi * temp[mask] / radius))

# oad forward mode data
tracerF = ds.tracer1[sliceTime, :, 0].values
rmseValue = np.sqrt(np.mean((tracerF - tracer)**2))

init.close()
ds.close()
return rmseValue, init.dims['nCells']
return rmseValue, init.sizes['nCells']
22 changes: 11 additions & 11 deletions compass/ocean/tests/sphere_transport/process_output.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from matplotlib.colors import ListedColormap
from importlib import resources

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from importlib import resources
from matplotlib.colors import ListedColormap
from matplotlib.gridspec import GridSpec


def appx_mesh_size(dataset):
Expand Down Expand Up @@ -260,8 +261,8 @@ def read_ncl_rgb_file(cmap_filename):
map_file_found = False
try:
with resources.open_text(
"compass.ocean.tests.sphere_transport.resources", cmap_filename) \
as f:
"compass.ocean.tests.sphere_transport.resources",
cmap_filename) as f:
flines = f.readlines()
map_file_found = True
except BaseException:
Expand All @@ -277,7 +278,7 @@ def read_ncl_rgb_file(cmap_filename):
result = ListedColormap(rgb, name=cmap_filename)
else:
print("error reading ncl colormap. using matplotlib default instead.")
result = matplotlib.cm.get_cmap()
result = matplotlib.pyplot.get_cmap()
return result


Expand Down Expand Up @@ -364,8 +365,7 @@ def plot_sol(fig, tcname, dataset):
cmap="seismic",
vmin=diffmin,
vmax=diffmax)
lcm = axes[9].tricontourf(xc, yc, dataset.variables["layerThickness"]
[0, :, 1])
axes[9].tricontourf(xc, yc, dataset.variables["layerThickness"][0, :, 1])
axes[9].set_ylabel('layer thickness')
axes[10].tricontourf(xc, yc, dataset.variables["layerThickness"]
[0, :, 1])
Expand All @@ -389,8 +389,8 @@ def plot_sol(fig, tcname, dataset):
axes[9 + i].set_xticklabels(xticklabels)
for i in range(9):
axes[i].set_xticklabels([])
cb1 = fig.colorbar(cm, ax=axes[8])
cb2 = fig.colorbar(tcm, ax=axes[5])
fig.colorbar(cm, ax=axes[8])
fig.colorbar(tcm, ax=axes[5])
# cb3 = fig.colorbar(lcm, ax=axes[11])
fig.suptitle(tcname)

Expand Down
Loading

0 comments on commit d75450b

Please sign in to comment.