Skip to content

EIBench: Assessing the Emotion Interpretation ability of Vision Large Language Models

License

Notifications You must be signed in to change notification settings

Lum1104/EIBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

30 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌟 EIBench: Assessing the Emotion Interpretation ability of Vision Large Language Models

eibench

EIBench is a comprehensive benchmark designed for evaluating systems on their ability to understand and identify emotional triggers, rather than just classifying emotions. This is essential for developing more empathetic and human-like AI systems.

πŸ” Key Highlights

  • Emotion Interpretation Task: Focuses on identifying the emotional triggers in conversations or media, providing AI with a deeper emotional understanding.
  • Rich Dataset: Features 78 fine-grained emotions and 1,655 Emotion Interpretation samples, with 50 challenging multi-faceted complex samples to test the limits of emotion understanding.
  • Extensive Evaluation: Benchmarks both open-source and closed-source language models on a wide array of emotional nuances, ensuring a thorough assessment of their capabilities.

πŸ“Š Benchmark Evaluation Metrics

EIBench evaluates model performance across different emotional categories like Happiness, Anger, Sadness, and Excitement. Each model is tested based on:

  • Basic Emotion Interpretation
  • Multi-Faceted Emotion Interpretation

πŸ’‘ Note: The numbers represent performance in different evaluation modes: (LLaMA-3 / ChatGPT).

Basic Emotion Interpretation Performance of Open-Source/Close-Source Language Models

Models Happy Angry Sadness Excitement Overall
User Question
Qwen-VL-Chat 32.09/39.68 22.32/26.10 30.64/33.88 25.02/36.32 26.45/33.65
Video-LLaVA 55.55/53.28 40.42/36.97 50.62/45.25 51.78/52.23 49.26/47.06
MiniGPT-v2 52.78/51.80 47.10/47.76 60.47/58.14 50.78/53.66 52.89/53.59
Otter 45.63/49.25 42.53/43.07 47.67/46.19 39.47/48.30 42.81/46.64
LLaVA-1.5 (13B) 59.01/57.52 45.44/41.88 55.16/48.64 57.46/58.73 54.37/52.20
LLaVA-NEXT (7B) 54.16/49.24 43.71/39.87 53.29/46.52 58.90/53.06 53.82/48.18
LLaVA-NEXT (13B) 57.17/55.18 43.16/37.93 54.16/45.42 59.38/55.29 54.33/48.79
LLaVA-NEXT (34B) 54.50/51.03 38.96/35.65 51.10/47.21 51.77/52.04 49.03/47.13
User Question & Caption
Qwen-VL-Chat 41.94/46.34 32.71/31.91 41.82/44.16 38.65/43.84 38.47/41.54
Video-LLaVA 56.77/58.79 43.65/43.86 54.25/55.12 55.35/59.42 52.63/54.85
MiniGPT-v2 55.11/60.04 47.95/51.00 62.29/64.24 51.55/57.90 54.05/58.37
Otter 48.97/54.67 34.22/37.12 34.57/37.55 35.27/42.99 35.62/40.85
LLaVA-1.5 (13B) 57.91/58.46 43.75/40.72 55.47/51.46 56.42/59.42 53.55/53.13
LLaVA-NEXT (7B) 64.32/61.00 48.60/46.74 58.75/53.00 62.99/59.39 58.80/54.97
LLaVA-NEXT (13B) 61.99/61.95 48.84/46.85 59.62/55.18 62.17/59.95 58.60/55.92
LLaVA-NEXT (34B) 57.51/62.73 46.47/47.87 58.35/55.84 60.17/59.64 56.60/56.24
LLaMA-3 (8B) (Text Only) 52.36/50.73 34.78/32.71 52.29/46.87 43.62/42.06 44.73/41.94
User Question & CoT
Qwen-VL-Chat 41.99/44.46 34.62/31.06 43.64/39.30 32.78/40.04 36.79/38.18
Video-LLaVA 51.42/47.63 42.68/35.65 56.77/46.29 53.01/46.98 51.81/44.42
MiniGPT-v2 56.36/57.58 47.71/48.32 59.46/56.79 50.21/52.39 52.67/53.08
Otter 49.97/51.91 43.23/43.71 50.15/46.86 42.30/47.16 45.17/46.61
LLaVA-1.5 (13B) 59.12/56.94 40.97/34.44 53.07/45.66 54.16/54.36 51.34/47.80
LLaVA-NEXT (7B) 54.74/52.04 44.61/41.93 52.69/47.63 52.78/47.60 51.14/46.66
LLaVA-NEXT (13B) 50.91/50.35 42.21/38.81 54.66/49.42 51.64/49.39 50.47/47.21
LLaVA-NEXT (34B) 52.17/49.55 48.35/44.45 55.97/50.55 55.29/53.46 53.84/50.50
CFSA (LLaVA-NEXT (34B)) 69.68/68.72 61.08/61.14 68.39/69.46 72.63/70.31 68.81/68.04
Close-source Models
Qwen-vl-plus 29.05/27.22 23.58/17.89 38.35/30.08 30.09/26.87 31.00/25.90
ChatGPT-4V 52.30/55.74 48.93/48.57 45.00/44.42 46.38/49.90 46.86/48.58
ChatGPT-4o 52.94/50.78 42.12/35.33 49.79/46.42 53.48/54.53 49.99/47.93
Claude-3-haiku 59.20/60.28 49.87/49.84 67.21/63.26 67.55/68.10 63.24/62.41
Claude-3-sonnet 44.58/44.45 38.95/42.86 55.98/54.40 61.41/62.24 54.10/54.89

Multi-faceted Emotion Interpretation Performance of Open-Source/Close-Source Language Models

Models Recall
Open-Source
Qwen-VL-Chat 22.00/32.40
Video-LLaVA 30.90/32.27
MiniGPT-v2 35.10/36.00
Otter 27.90/33.23
LLaVA-1.5 (13B) 38.10/39.53
LLaVA-NEXT (7B) 38.71/33.50
LLaVA-NEXT (13B) 39.16/33.60
LLaVA-NEXT (34B) 35.37/33.10
Close-Source
Qwen-vl-plus 20.37/19.60
Claude-3-haiku 24.00/24.77
Claude-3-sonnet 21.37/22.40
ChatGPT-4V 28.00/30.60
ChatGPT-4o 39.27/39.57

πŸ“¦ Prerequisites

To get started with EIBench, you'll need to download and prepare the following datasets:

After downloading, unzip these datasets and place them in the datasets folder in your project directory.

πŸ› οΈ Setup & Usage

To use the EIBench dataset and benchmark in your project:

  1. Clone this repository:
git clone https://github.com/Lum1104/EIBench.git
  1. Navigate to the directory:
cd EIBench
  1. Run the example baseline code and test your own models.

For each baseline model, please install the required environment as needed:

# Basic EIBench
python EIBench/baselines/qwen/qwen_user.py --model-path Qwen/Qwen-VL-Chat --input-json EIBench/EI_Basic/user.jsonl --output-json EIBench/EI_Basic/qwen_basic.jsonl --image-path datasets/
# Complex EIBench
python EIBench/baselines/qwen/qwen_complex.py --model-path Qwen/Qwen-VL-Chat --input-json EI_Complex/ei_complex.jsonl --output-json EIBench/EI_Complex/qwen_complex.jsonl --image-path datasets/
  1. Get evaluate results by LLaMA-3/ChatGPT-3.5

Here is the script for LLaMA-3 evaluation.

# Basic EIBench
cd EIBench/EI_Basic/
python llama3-eval.py --model-id meta-llama/Meta-Llama-3-8B-Instruct --ec-data-file qwen_basic.jsonl --gt-file basic_ground_truth.json --output-file qwen_basic_scores_llama3.jsonl
python get_scores.py --file-path qwen_basic_llama3_scores.jsonl
# Complex EIBench
cd EIBench/EI_Complex/
python llama3-eval-complex.py --ec-data-file qwen_complex.jsonl --gt-file ei_complex.jsonl --output-file qwen_complex_llama3_scores.jsonl --model-id meta-llama/Meta-Llama-3-8B-Instruct

Here is the script for ChatGPT-3.5 evaluation. Prepare your api key and write it in the variable OpenAI(api_key="YOUR_API_KEY").

# Basic EIBench
cd EIBench/EI_Basic/
python gpt-eval.py --ec-data-file qwen_basic.jsonl --gt-file basic_ground_truth.json --output-file qwen_basic_scores_gpt.jsonl
python get_scores.py --file-path qwen_basic_gpt_scores.jsonl
# Complex EIBench
cd EIBench/EI_Complex/
python gpt-eval-complex.py --ec-data-file qwen_complex.jsonl --gt-file ei_complex.jsonl --output-file qwen_complex_gpt_scores.jsonl

We also provide evaluation code for Long-term Coherence. Please install the required packages:

pip install spacy
pip -m spacy download en_core_web_sm
cd EIBench/EI_Basic/
python long_term_scores.py --file-path path/to/ei_data.jsonl

Baselines

Close-source Models

# (gpt4o/gpt4v)
python gpt4-basic.py --ec-data-file path/to/user.jsonl --image-path path/to/dataset/ --output-file gpt4o_user.jsonl
python gpt4-score-complex.py --gt-file path/to/ei_complex.jsonl --image-path path/to/dataset/ --output-file gpt4o_complex.jsonl
# (Claude-3-haiku/Claude-3-sonnet)
python claude_basic.py --ec-data-file path/to/user.jsonl --image-path path/to/dataset/ --output-file claude_haiku_user.jsonl
python claude_complex.py --gt-file path/to/ei_complex.jsonl --image-path path/to/dataset/ --output-file claude_haiku_complex.jsonl
# qwen-vl-plus
python qwen_api_basic.py --ec-data-file path/to/user.jsonl --image-path path/to/datasets/ --output-file qwen_api_user.jsonl
python qwen_api_complex.py --gt-file path/to/ei_complex.jsonl --image-path path/to/dataset --output-file qwen_qpi_complex.jsonl

Open-source Models

Please follow the enviornment needed by each baseline models:

LLaVA

cd LLaVA
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
# Input different LLaVA model to get the evaluation results.
python -m llava.serve.ei_basic_llava --model-path liuhaotian/llava-v1.6-34b --image-file path/to/user.jsonl --out-json llava34b_user.jsonl --image-path path/to/dataset/
python -m llava.serve.ei_complex_llava --model-path liuhaotian/llava-v1.6-34b --image-file path/to/ei_complex.jsonl --out-json llava34b_complex.jsonl --image-path path/to/dataset/

MiniGPT4-v2

cd MiniGPT4-v2
conda env create -f environment.yml
conda activate minigptv
# Modify MiniGPT4-v2/eval_configs/minigptv2_eval.yaml
python ei_basic_minigpt4v2.py --cfg-path eval_configs/minigptv2_eval.yaml  --gpu-id 0 --img-path path/to/user.jsonl --out-json minigpt4v2_user.jsonl --dataset-path path/to/dataset/
python ei_complex_minigpt4v2.py --cfg-path eval_configs/minigptv2_eval.yaml  --gpu-id 0 --img-path path/to/ei_complex.jsonl --out-json minigpt_complex.jsonl --dataset-path path/to/dataset/

Otter

cd Otter
conda env create -f environment.yml
conda activate otter
python ei_basic_otter.py --ec-data-file path/to/user.jsonl --image-path path/to/datasets/ --output-file otter_user.jsonl
python ei_complex_otter.py --gt-file path/to/ei_complex.jsonl --image-path path/to/dataset/ --output-file otter_complex.jsonl

Feel free to explore, contribute, and raise issues if you run into any trouble!

About

EIBench: Assessing the Emotion Interpretation ability of Vision Large Language Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published