Skip to content

Commit

Permalink
begin riemann
Browse files Browse the repository at this point in the history
  • Loading branch information
LuckeeDev committed Dec 29, 2023
1 parent fa2f743 commit 6a2617a
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 1 deletion.
18 changes: 18 additions & 0 deletions tex/analysis_2/5_peano_jordan.tex
Original file line number Diff line number Diff line change
Expand Up @@ -203,4 +203,22 @@ \section{Integrazione secondo Riemann}
\begin{definition}
[Funzione non negativa integrabile secondo Riemann]
Siano $A \subseteq \R^n, \ A \in \mathcal{J}(\R^n), \ f: A \to \R$ limitata e tale che $f \geq 0$. Si definisce sottografico di $f$ l'insieme $R(f)=\{(\vb{x}, y)\in A \times \R_{\geq 0} : 0 \leq y \leq f(\vb{x})\}$.
$f$ si dice integrabile secondo Riemann se $R(f) \in \mathcal{J}(\R^{n+1})$ e in tal caso
\begin{equation*}
\idotsint_A f(x_1,\dots,x_n)dx_1\cdots dx_n=\mu_{n+1}(R(f))
\end{equation*}
\end{definition}

\begin{definition}
[Parte positiva e parte negativa]
Se $f:A \subseteq \R^n \to \R$, si definiscono:
\begin{itemize}
\item Parte positiva di $f$, $f_+(x)=\max\{0,f(x)\}$
\item Parte negativa di $f$, $f_-(x)=\max\{0,-f(x)\}$
\end{itemize}
In base a questa definizione, $f(x)=f_+(x)-f_-(x)$ e $\abs{f(x)}=f_+(x)+f_-(x)$.
\end{definition}

\begin{definition}
[Funzione integrabile secondo Riemann]
\end{definition}
2 changes: 1 addition & 1 deletion tex/analysis_2/analysis_2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
\usepackage{graphicx}
\usepackage[italian]{babel}
\usepackage[a4paper,margin=1in]{geometry}
\usepackage{amsthm, amssymb, amsmath, bm, physics}
\usepackage{amsthm, amssymb, amsmath, bm, physics, esint}

% Links
\usepackage{hyperref}
Expand Down

0 comments on commit 6a2617a

Please sign in to comment.