Skip to content

Commit

Permalink
add dim thm 1.1 chap 3
Browse files Browse the repository at this point in the history
  • Loading branch information
LuckeeDev committed Jan 4, 2024
1 parent cbe51ed commit 1e13712
Showing 1 changed file with 24 additions and 1 deletion.
25 changes: 24 additions & 1 deletion tex/analysis_2/3_calculus_nvars.tex
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,30 @@ \section{Funzioni differenziabili}
\end{theorem}

\begin{proof}
% TODO
Si dimostra ciascun punto separatamente.
\begin{enumerate}
\item Si verifica che la distanza fra $f(\vb{x})$ e $f(\vb{x_0})$ tende a $0$ se $\vb{x}$ tende a $\vb{x_0}$.
\begin{align*}
\abs{f(\vb{x})-f(\vb{x_0})}&=\abs{\innerproduct{\vb{m}}{\vb{x}-\vb{x_0}}+o(\norm{\vb{\vb{x}-\vb{x_0}}})}\leq\\
&\leq\abs{\innerproduct{\vb{m}}{\vb{\vb{x}-\vb{x_0}}}}+o(\norm{\vb{\vb{x}-\vb{x_0}}})\leq\\
&\leq\norm{\vb{m}}\norm{\vb{x}-\vb{x_0}}+o(\norm{\vb{x}-\vb{x_0}})\xrightarrow{\vb{x}\to\vb{x_0}} 0
\end{align*}

\item Si studi il limite che definisce la derivata parziale $j$-esima di $f$ in $\vb{x_0}$.
\begin{align*}
\frac{\partial f}{\partial x_j}&=\lim_{t\to 0}\frac{f(\vb{x_0}+t\hat{\vb{e}}_j)-f(\vb{x_0})}{t}=\\
&=\lim_{t\to 0}\frac{\innerproduct{\vb{m}}{t\hat{\vb{e}}_j} + o(\abs{t})}{t}=\\
&=\innerproduct{\vb{m}}{\hat{\vb{e}}_j}=m_j
\end{align*}
La derivata parziale di $f$ rispetto a $x_j$ è la $j$-esima componente del vettore $\vb{m}$, quindi $\vb{m}=\grad f(\vb{x_0})$.

\item Come nel punto 2, si studi il limite che definisce la derivata direzionale di $f$ in $\vb{x_0}$.
\begin{align*}
\frac{\partial f}{\partial \hat{\bm \nu}}&=\lim_{t\to 0}\frac{f(\vb{x_0}+t\hat{\bm \nu})-f(\vb{x_0})}{t}=\\
&=\lim_{t\to 0}\frac{\innerproduct{\grad f(\vb{x_0})}{t\hat{\bm \nu}} + o(\abs{t})}{t}=\\
&=\innerproduct{\grad f(\vb{x_0})}{\hat{\bm \nu}}
\end{align*}
\end{enumerate}
\end{proof}

\begin{definition}
Expand Down

0 comments on commit 1e13712

Please sign in to comment.