-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfid_eval.py
364 lines (273 loc) · 11.8 KB
/
fid_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import cv2
import os
import sys
import math
import time
import json
import glob
import argparse
import urllib.request
from PIL import Image, ImageFilter
from numpy import random
import numpy as np
import torch
from picture_tool.Quality_Metrics import metric as module_metric
from picture_tool.Quality_Metrics.SIFID.inception import InceptionV3
from picture_tool.Quality_Metrics.metric import calculate_activation_statistics,\
calculate_frechet_distance,torch_calculate_frechet_distance,calculate_temp_activation_statistics
# from util.inception_utils import torch_calculate_frechet_distance
# from picture_tool.Quality_Metrics.metric import calculate_frechet_distance_cupy,
import shutil
import scipy
import argparse
import lpips
# set parameter to gpu or cpu
def set_device(args):
if torch.cuda.is_available():
if isinstance(args, list):
return (item.cuda() for item in args)
else:
return args.cuda()
return args
def lpip_matrix(path1,postfix1,path2,postfix2,device):
real_names = list(glob.glob('{}/*{}'.format(path1, postfix1)))
fake_names = list(glob.glob('{}/*{}'.format(path2, postfix2)))
real_names.sort()
fake_names.sort()
print("real_names:%d" % len(real_names))
print("fake_names:%d" % len(fake_names))
## Initializing the model
# loss_fn = lpips.LPIPS(net='alex', version='0.1')
loss_fn = lpips.LPIPS(net='vgg', version='0.1').to(device)
with torch.no_grad():
error =0.0
for rname, fname in zip(real_names, fake_names):
# Load images
#fake
img0 = lpips.im2tensor(lpips.load_image(fname))
#real
img1 = lpips.im2tensor(lpips.load_image(rname)) # RGB image from [-1,1]
img0 = img0.to(device)
img1 = img1.to(device)
# Compute distance
dist01 = loss_fn.forward(img0, img1)
error+=dist01
torch.cuda.empty_cache()
error = error/len(real_names)
return error
def test_matrix(path1,postfix1,path2,postfix2,test_name,batch_size=32):
out_dic = {}
real_names = list(glob.glob('{}/*{}'.format(path1,postfix1)))
fake_names = list(glob.glob('{}/*{}'.format(path2,postfix2)))
real_names.sort()
fake_names.sort()
print("real_names:%d"%len(real_names))
print("fake_names:%d"%len(fake_names))
###
up_name = []
for name_ in test_name:
if name_ in ['mae', 'psnr', 'ssim']:
up_name.append(name_)
###
# metrics prepare for image assesments
metrics = {met: getattr(module_metric, met) for met in up_name}
# infer through videos
real_images = []
fake_images = []
print("opening files")
evaluation_scores = {key: 0 for key, val in metrics.items()}
for rname, fname in zip(real_names, fake_names):
rimg = Image.open(rname)
fimg = Image.open(fname)
real_images.append(np.array(rimg))
fake_images.append(np.array(fimg))
print("calculating image quality assessments")
# calculating image quality assessments
for key, val in metrics.items():
evaluation_scores[key] = val(real_images, fake_images)
out_dic[key] = evaluation_scores[key]
print(' '.join(['{}: {:6f},'.format(key, val) for key, val in evaluation_scores.items()]))
if "fid" not in test_name:
print('Finish evaluation from {}'.format(path2))
return out_dic
dims = 2048
batch_size = batch_size
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = set_device(InceptionV3([block_idx]))
torch.cuda.empty_cache()
# calculate fid statistics for real images
print("calculate fid statistics for real images")
real_images = np.array(real_images).astype(np.float32) / 255.0
real_images = real_images.transpose((0, 3, 1, 2))
real_m, real_s = calculate_activation_statistics(real_images, model, batch_size, dims)
# calculate fid statistics for fake images
print("calculate fid statistics for fake images")
fake_images = np.array(fake_images).astype(np.float32) / 255.0
fake_images = fake_images.transpose((0, 3, 1, 2))
fake_m, fake_s = calculate_activation_statistics(fake_images, model, batch_size, dims)
print("calculate fid statistics for fake images")
fid_value = calculate_frechet_distance(real_m, real_s, fake_m, fake_s)
print('ori :FID mean: {}'.format(round(fid_value, 5)))
# fid_value_ = calculate_frechet_distance_cupy(real_m, real_s, fake_m, fake_s)
fid_value = torch_calculate_frechet_distance(real_m, real_s, fake_m, fake_s)
# fid_value_ = torch_calculate_frechet_distance(torch.tensor(fake_m).float().cuda(), torch.tensor(fake_s).float().cuda()
# , torch.tensor(real_m).float().cuda(),torch.tensor(real_s).float().cuda()).cpu().numpy()
fid_value = np.mean(float(fid_value))
print('torch FID mean: {}'.format(round(fid_value, 5)))
# fid_value = np.max(float(fid_value_))
# print('FID max : {}'.format(round(fid_value, 5)))
# print('FID: {}'.format(round(fid_value, 5)))
out_dic["fid"] = fid_value
print('Finish evaluation from {}'.format(path2))
torch.cuda.empty_cache()
return out_dic
def get_temp_fid_activation(path1,postfix1,path2,postfix2,batch_size=32):
real_names = list(glob.glob('{}/*{}'.format(path1,postfix1)))
fake_names = list(glob.glob('{}/*{}'.format(path2,postfix2)))
real_names.sort()
fake_names.sort()
print(len(real_names))
print(len(fake_names))
# infer through videos
real_images = []
fake_images = []
print("opening files")
for rname, fname in zip(real_names, fake_names):
rimg = Image.open(rname)
fimg = Image.open(fname)
real_images.append(np.array(rimg))
fake_images.append(np.array(fimg))
dims = 2048
batch_size = batch_size
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = set_device(InceptionV3([block_idx]))
# calculate fid statistics for real images
print("calculate fid statistics for real images")
real_images = np.array(real_images).astype(np.float32) / 255.0
real_images = real_images.transpose((0, 3, 1, 2))
real_acts = calculate_temp_activation_statistics(real_images, model, batch_size, dims,verbose=True)
# calculate fid statistics for fake images
print("calculate fid statistics for fake images")
fake_images = np.array(fake_images).astype(np.float32) / 255.0
fake_images = fake_images.transpose((0, 3, 1, 2))
fake_acts = calculate_temp_activation_statistics(fake_images, model, batch_size, dims,verbose=True)
return real_acts,fake_acts
def get_final_fid_activation(real_acts,fake_acts):
real_m = np.mean(real_acts, axis=0)
real_s = np.cov(real_acts, rowvar=False)
fake_m = np.mean(fake_acts, axis=0)
fake_s = np.cov(fake_acts, rowvar=False)
print("calculate fid statistics for fake images")
fid_value_ = calculate_frechet_distance_cupy(real_m, real_s, fake_m, fake_s)
# fid_value_ = torch_calculate_frechet_distance(torch.tensor(fake_m).float().cuda(), torch.tensor(fake_s).float().cuda()
# , torch.tensor(real_m).float().cuda(),torch.tensor(real_s).float().cuda()).cpu().numpy()
fid_value = np.mean(float(fid_value_))
print('FID mean: {}'.format(round(fid_value, 5)))
# fid_value = np.max(float(fid_value_))
# print('FID max : {}'.format(round(fid_value, 5)))
return fid_value
def eval_other_(inpaint_root,gt_root,gt_postfix,inpainting_postfix):
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('--path1', type=str)
parser.add_argument('--path2', type=str)
parser.add_argument('--postfix1', type=str)
parser.add_argument('--postfix2', type=str)
args = parser.parse_args()
# gt_postfix = "_gt.png"
# inpainting_postfix = "_inpaint.png"
# gt_root = "/home/k/Longlongaaago/inpainting_gmcnn-amax2/pytorch/" \
# "test_20210305-025945_celebahq_gmcnn_s256x256_gc32"
# inpaint_root = "/home/k/Longlongaaago/inpainting_gmcnn-amax2/pytorch/" \
# "test_results/test_20210305-025945_celebahq_gmcnn_s256x256_gc32"
args.path1 = gt_root
args.postfix1 = gt_postfix
args.path2 = inpaint_root
args.postfix2 = inpainting_postfix
test_name = ["fid"]
test_matrix(args,test_name=test_name)
def test_all():
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('--root1', default="",help="dataset",type=str)
parser.add_argument('--root2', default="", help="test_ root_ for all",type=str)
parser.add_argument('--postfix1', default=".jpg", type=str)
parser.add_argument('--postfix2', default=".png", type=str)
args = parser.parse_args()
test_name = ["fid"]
name_list = ["20210411072149","20210411072225"]
dir_list = os.listdir(args.root2)
for file in dir_list:
if file not in name_list: continue
print(file)
path = os.path.join(args.root2, file)
if os.path.isdir(path):
#running file
if not os.path.exists(path): continue
print("%s is existing, now we testing!" % path)
index= -1
score = 1000
for j in range(0,10):
new_path = os.path.join(path,"eval_%d0000/img"%(j))
if not os.path.exists(new_path): continue
print("test in %s"%new_path)
out_dic = test_matrix(path1=args.root1,postfix1=args.postfix1
,path2=new_path,postfix2=args.postfix2, test_name=test_name)
remove_id = j
#如果是刚开始
if index == -1:
index = 0
score = out_dic["fid"]
elif score>out_dic["fid"]:
score = out_dic["fid"]
remove_id = index
index = j
remove_path = os.path.join(path, "eval_%d0000" % (remove_id))
os.remove(remove_path)
def test_fid(root1,postfix1,postfix2,path2="./"):
"""
:param root1: data path
:param postfix1:
:param postfix2:
:param path2: eval path
:return:
"""
test_name = ["fid"]
for j in range(0, 10):
new_path = os.path.join(path2, "eval_%d0000/img" % (j))
if not os.path.exists(new_path): continue
print("test in %s" % new_path)
out_dic = test_matrix(path1=root1, postfix1=postfix1
, path2=new_path, postfix2=postfix2, test_name=test_name)
remove_id = j
# 如果是刚开始
if index == -1:
index = 0
score = out_dic["fid"]
elif score > out_dic["fid"]:
score = out_dic["fid"]
remove_id = index
index = j
remove_path = os.path.join(path2, "eval_%d0000" % (remove_id))
if os.path.exists(remove_path):
shutil.rmtree(remove_path)
# dir_list = ut.listdir(args.root2)
def test_single():
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('--path1', default="", type=str)
parser.add_argument('--path2', default="", type=str)
parser.add_argument('--postfix1', default=".jpg", type=str)
parser.add_argument('--postfix2', default=".jpg", type=str)
args = parser.parse_args()
# gt_postfix = "_gt.png"
# inpainting_postfix = "_inpaint.png"
# gt_root = "/home/k/Longlongaaago/inpainting_gmcnn-amax2/pytorch/" \
# "test_20210305-025945_celebahq_gmcnn_s256x256_gc32"
# inpaint_root = "/home/k/Longlongaaago/inpainting_gmcnn-amax2/pytorch/" \
# "test_results/test_20210305-025945_celebahq_gmcnn_s256x256_gc32"
# args.path1 = gt_root
# args.postfix1 = gt_postfix
# args.path2 = inpaint_root
# args.postfix2 = inpainting_postfix
test_name = ["fid"]
test_matrix(args, test_name=test_name)
if __name__ == '__main__':
test_all()