forked from SciSharp/TensorFlow.NET
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImageRecognition.cs
99 lines (84 loc) · 3.75 KB
/
ImageRecognition.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
using NumSharp.Core;
using System;
using System.Collections.Generic;
using System.IO;
using System.IO.Compression;
using System.Linq;
using System.Net;
using System.Text;
using Tensorflow;
namespace TensorFlowNET.Examples
{
public class ImageRecognition : Python, IExample
{
string dir = "ImageRecognition";
string pbFile = "tensorflow_inception_graph.pb";
string labelFile = "imagenet_comp_graph_label_strings.txt";
string picFile = "grace_hopper.jpg";
public void Run()
{
PrepareData();
var labels = File.ReadAllLines(Path.Join(dir, labelFile));
var files = Directory.GetFiles(Path.Join(dir, "img"));
foreach (var file in files)
{
var tensor = ReadTensorFromImageFile(file);
var graph = new Graph().as_default();
//import GraphDef from pb file
graph.Import(Path.Join(dir, pbFile));
var input_name = "input";
var output_name = "output";
var input_operation = graph.OperationByName(input_name);
var output_operation = graph.OperationByName(output_name);
var idx = 0;
float propability = 0;
with<Session>(tf.Session(graph), sess =>
{
var results = sess.run(output_operation.outputs[0], new FeedItem(input_operation.outputs[0], tensor));
var probabilities = results.Data<float>();
for (int i = 0; i < probabilities.Length; i++)
{
if (probabilities[i] > propability)
{
idx = i;
propability = probabilities[i];
}
}
});
Console.WriteLine($"{picFile}: {labels[idx]} {propability}");
}
}
private NDArray ReadTensorFromImageFile(string file_name,
int input_height = 224,
int input_width = 224,
int input_mean = 117,
int input_std = 1)
{
return with<Graph, NDArray>(tf.Graph().as_default(), graph =>
{
var file_reader = tf.read_file(file_name, "file_reader");
var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { input_height, input_width });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { input_mean });
var normalized = tf.divide(sub, new float[] { input_std });
return with<Session, NDArray>(tf.Session(graph), sess => sess.run(normalized));
});
}
private void PrepareData()
{
Directory.CreateDirectory(dir);
// get model file
string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
string zipFile = Path.Join(dir, "inception5h.zip");
Utility.Web.Download(url, zipFile);
Utility.Compress.UnZip(zipFile, dir);
// download sample picture
string pic = Path.Join(dir, "img", "grace_hopper.jpg");
Directory.CreateDirectory(Path.Join(dir, "img"));
Utility.Web.Download($"https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/data/grace_hopper.jpg", pic);
}
}
}