-
Notifications
You must be signed in to change notification settings - Fork 163
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
4,743 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
import pdb | ||
import json | ||
from mod_core_rnn_cell_impl import LSTMCell # modified to allow initializing bias in lstm | ||
|
||
import data_utils | ||
import plotting | ||
import model | ||
import mmd | ||
import utils | ||
import eval | ||
import DR_discriminator | ||
|
||
from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer | ||
from differential_privacy.dp_sgd.dp_optimizer import sanitizer | ||
from differential_privacy.privacy_accountant.tf import accountant | ||
|
||
# --- get settings --- # | ||
# parse command line arguments, or use defaults | ||
parser = utils.rgan_options_parser() | ||
settings = vars(parser.parse_args()) | ||
# if a settings file is specified, it overrides command line arguments/defaults | ||
if settings['settings_file']: settings = utils.load_settings_from_file(settings) | ||
|
||
# --- get data, split --- # | ||
data_path = './experiments/data/' + settings['data_load_from'] + '.data.npy' | ||
print('Loading data from', data_path) | ||
samples, labels, index = data_utils.get_data(settings["data"], settings["seq_length"], settings["seq_step"], | ||
settings["num_signals"], settings["sub_id"], settings["eval_single"], | ||
settings["eval_an"], data_path) | ||
# --- save settings, data --- # | ||
# no need | ||
print('Ready to run with settings:') | ||
for (k, v) in settings.items(): print(v, '\t', k) | ||
# add the settings to local environment | ||
# WARNING: at this point a lot of variables appear | ||
locals().update(settings) | ||
json.dump(settings, open('./experiments/settings/' + identifier + '.txt', 'w'), indent=0) | ||
|
||
class myADclass(): | ||
def __init__(self, epoch, settings=settings, samples=samples, labels=labels, index=index): | ||
self.epoch = epoch | ||
self.settings = settings | ||
self.samples = samples | ||
self.labels = labels | ||
self.index = index | ||
def ADfunc(self): | ||
num_samples_t = self.samples.shape[0] | ||
t_size = 500 | ||
T_index = np.random.choice(num_samples_t, size=t_size, replace=False) | ||
print('sample_shape:', self.samples.shape[0]) | ||
print('num_samples_t', num_samples_t) | ||
|
||
# -- only discriminate one batch for one time -- # | ||
D_test = np.empty([t_size, self.settings['seq_length'], 1]) | ||
DL_test = np.empty([t_size, self.settings['seq_length'], 1]) | ||
GG = np.empty([t_size, self.settings['seq_length'], self.settings['num_signals']]) | ||
T_samples = np.empty([t_size, self.settings['seq_length'], self.settings['num_signals']]) | ||
L_mb = np.empty([t_size, self.settings['seq_length'], 1]) | ||
I_mb = np.empty([t_size, self.settings['seq_length'], 1]) | ||
for batch_idx in range(0, t_size): | ||
# print('epoch:{}'.format(self.epoch)) | ||
# print('batch_idx:{}'.format(batch_idx)) | ||
# display batch progress | ||
model.display_batch_progression(batch_idx, t_size) | ||
T_mb = self.samples[T_index[batch_idx], :, :] | ||
L_mmb = self.labels[T_index[batch_idx], :, :] | ||
I_mmb = self.index[T_index[batch_idx], :, :] | ||
para_path = './experiments/parameters/' + self.settings['sub_id'] + '_' + str( | ||
self.settings['seq_length']) + '_' + str(self.epoch) + '.npy' | ||
D_t, L_t = DR_discriminator.dis_D_model(self.settings, T_mb, para_path) | ||
Gs, Zs, error_per_sample, heuristic_sigma = DR_discriminator.invert(self.settings, T_mb, para_path, | ||
g_tolerance=None, | ||
e_tolerance=0.1, n_iter=None, | ||
max_iter=1000, | ||
heuristic_sigma=None) | ||
GG[batch_idx, :, :] = Gs | ||
T_samples[batch_idx, :, :] = T_mb | ||
D_test[batch_idx, :, :] = D_t | ||
DL_test[batch_idx, :, :] = L_t | ||
L_mb[batch_idx, :, :] = L_mmb | ||
I_mb[batch_idx, :, :] = I_mmb | ||
|
||
# -- use self-defined evaluation functions -- # | ||
# -- test different tao values for the detection function -- # | ||
results = np.empty([5, 5]) | ||
# for i in range(2, 8): | ||
# tao = 0.1 * i | ||
tao = 0.5 | ||
lam = 0.8 | ||
Accu1, Pre1, Rec1, F11, FPR1, D_L1 = DR_discriminator.detection_D_I(DL_test, L_mb, I_mb, self.settings['seq_step'], tao) | ||
print('seq_length:', self.settings['seq_length']) | ||
print('D:Comb-logits-based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}' | ||
.format(self.epoch, tao, Accu1, Pre1, Rec1, F11, FPR1)) | ||
results[0, :] = [Accu1, Pre1, Rec1, F11, FPR1] | ||
|
||
Accu2, Pre2, Rec2, F12, FPR2, D_L2 = DR_discriminator.detection_D_I(D_test, L_mb, I_mb, self.settings['seq_step'], tao) | ||
print('seq_length:', self.settings['seq_length']) | ||
print('D:Comb-statistic-based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}' | ||
.format(self.epoch, tao, Accu2, Pre2, Rec2, F12, FPR2)) | ||
results[1, :] = [Accu2, Pre2, Rec2, F12, FPR2] | ||
|
||
Accu3, Pre3, Rec3, F13, FPR3, D_L3 = DR_discriminator.detection_R_D_I(DL_test, GG, T_samples, L_mb, self.settings['seq_step'], tao, lam) | ||
print('seq_length:', self.settings['seq_length']) | ||
print('RD:Comb-logits_based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}' | ||
.format(self.epoch, tao, Accu3, Pre3, Rec3, F13, FPR3)) | ||
results[2, :] = [Accu3, Pre3, Rec3, F13, FPR3] | ||
|
||
Accu4, Pre4, Rec4, F14, FPR4, D_L4 = DR_discriminator.detection_R_D_I(D_test, GG, T_samples, L_mb, self.settings['seq_step'], tao, lam) | ||
print('seq_length:', self.settings['seq_length']) | ||
print('RD:Comb-statistic-based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}' | ||
.format(self.epoch, tao, Accu4, Pre4, Rec4, F14, FPR4)) | ||
results[3, :] = [Accu4, Pre4, Rec4, F14, FPR4] | ||
|
||
Accu5, Pre5, Rec5, F15, FPR5, D_L5 = DR_discriminator.detection_R_I(GG, T_samples, L_mb, self.settings['seq_step'],tao) | ||
print('seq_length:', self.settings['seq_length']) | ||
print('G:Comb-sample-based-Epoch: {}; tao={:.1}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}' | ||
.format(self.epoch, tao, Accu5, Pre5, Rec5, F15, FPR5)) | ||
results[4, :] = [Accu5, Pre5, Rec5, F15, FPR5] | ||
|
||
return results, GG, D_test, DL_test | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
print('Main Starting...') | ||
|
||
Results = np.empty([settings['num_epochs'], 5, 5]) | ||
|
||
t_size = 500 | ||
D_test = np.empty([settings['num_epochs'], t_size, settings['seq_length'], 1]) | ||
DL_test = np.empty([settings['num_epochs'], t_size, settings['seq_length'], 1]) | ||
GG = np.empty([settings['num_epochs'], t_size, settings['seq_length'], settings['num_signals']]) | ||
|
||
for epoch in range(settings['num_epochs']): | ||
# for epoch in range(1): | ||
ob = myADclass(epoch) | ||
Results[epoch, :, :], GG[epoch, :, :, :], D_test[epoch, :, :, :], DL_test[epoch, :, :, :] = ob.ADfunc() | ||
|
||
res_path = './experiments/plots/Results_Invert' + '_' + settings['sub_id'] + '_' + str( | ||
settings['seq_length']) + '.npy' | ||
np.save(res_path, Results) | ||
|
||
dg_path = './experiments/plots/DG_Invert' + '_' + settings['sub_id'] + '_' + str( | ||
settings['seq_length']) + '_' | ||
np.save(dg_path + 'D_test.npy', D_test) | ||
np.save(dg_path + 'DL_test.npy', DL_test) | ||
np.save(dg_path + 'GG.npy', DL_test) | ||
|
||
print('Main Terminating...') |
Oops, something went wrong.