Tensorflow implementation mobilenetv2-yolov3 and efficientnet-yolov3 inspired by keras-yolo3
Backend:
- MobilenetV2
- Efficientnet
- Darknet53
Callback:
- mAP
- Tensorboard extern callback
Loss:
- MSE
- GIOU
Train:
- Multi scale image size
- Cosine learning rate
Tensorflow:
- Tensorflow2 Ready
- Use tf.data to load dataset
- Use tfds to load dataset
- Remove image shape input when use session
- Convert model to tensorflow lite model
- Multi GPU training
- TPU support
Serving:
- Tensorflow Serving warm up request
- Tensorflow Serving JAVA Client
- Tensorflow Serving Python Client
- Tensorflow Serving Service Control Client
- Tensorflow Serving Server Build and Plugins develop
pip install -r requirements.txt
python main.py --help
- Format file name like [name]_[number].[extension]
Example:
voc_train_3998.txt
2. If you are using txt dataset, please format records like [image_path] [,[xmin ymin xmax ymax class]]
(for convenience, you can modify voc_text.py to parse your data to specific data format), else you should modify voc_annotation.py, then run
python voc_annotation.py
to parse your data to tfrecords.
Example:
/image/path 179 66 272 290 14 172 38 317 349 14 276 2 426 252 14 1 32 498 365 13
3. Run:
python main.py --mode=TRAIN --train_dataset_glob=<your dataset glob>
python main.py --mode=IMAGE --model=<your_model_path>
python main.py --mode=SERVING --model=<your_model_path>
python main.py --config=mobilenetv2.yaml
Set up tensorflow.js model (Live Demo: https://fsx950223.github.io/mobilenetv2-yolov3/tfjs/)
- Create a web server on project folder
- Open browser and enter [your_url:your_port]/tfjs
- Download pascal tfrecords from here.
- Download pre-trained mobilenetv2-yolov3 model(VOC2007) here
- Download pre-trained efficientnet-yolov3 model(VOC2007) here
- Download pre-trained efficientnet-yolov3 model(VOC2007+2012) here
Network: Mobilenetv2+Yolov3
Input size: 416*416
Train Dataset: VOC2007
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.585270123970341
bicycle ap: 0.7311717479746895
bird ap: 0.6228634475289679
boat ap: 0.44729361226611786
bottle ap: 0.3524265151288485
bus ap: 0.7260233058709467
car ap: 0.7572503412774444
cat ap: 0.8443930169586521
chair ap: 0.3530240979604032
cow ap: 0.5680746465428056
diningtable ap: 0.6046673143934721
dog ap: 0.8096497542858805
horse ap: 0.785358647511358
motorbike ap: 0.7299038925396009
person ap: 0.6926967393665762
pottedplant ap: 0.2960290730045794
sheep ap: 0.5569735405574012
sofa ap: 0.6053534702293342
train ap: 0.7304618425853895
tvmonitor ap: 0.5983913977616169
mAP: 0.6198638263857212
GPU inference time (GTX1080Ti): 19ms
CPU inference time (i7-8550U): 112ms
Model size: 37M
Network: Efficientnet+Yolov3
Input size: 380*380
Train Dataset: VOC2007
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.6492260838166934
bicycle ap: 0.8010712280076165
bird ap: 0.7013865117634108
boat ap: 0.5557173155813903
bottle ap: 0.4353563564340365
bus ap: 0.753804699972881
car ap: 0.7878183961387922
cat ap: 0.8632726491920759
chair ap: 0.4090719340574334
cow ap: 0.6657089830054761
diningtable ap: 0.6513494390619038
dog ap: 0.8466486584164448
horse ap: 0.8328765157511936
motorbike ap: 0.7607912651726462
person ap: 0.7089970516297166
pottedplant ap: 0.32875322571854027
sheep ap: 0.6372370950276296
sofa ap: 0.675301446703759
train ap: 0.7734685594308568
tvmonitor ap: 0.6505409659737674
mAP: 0.6744199190428132
GPU inference time (GTX1080Ti): 23ms
CPU inference time (i7-8550U): 168ms
Model size: 77M
Network: Efficientnet+Yolov3
Input size: 380*380
Train Dataset: VOC2007+VOC2012
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.8186380791530123
bicycle ap: 0.778370501901752
bird ap: 0.8040658409051149
boat ap: 0.6606796907615438
bottle ap: 0.5338128542328597
bus ap: 0.8516086793836817
car ap: 0.8247881435224634
cat ap: 0.9271784386863242
chair ap: 0.5344565229671414
cow ap: 0.7724057669182698
diningtable ap: 0.701598520527006
dog ap: 0.9052246177009002
horse ap: 0.8477206181813397
motorbike ap: 0.8275932123398402
person ap: 0.7605203479510053
pottedplant ap: 0.45979410517062475
sheep ap: 0.8301611044152797
sofa ap: 0.7393617389123919
train ap: 0.8817430073959469
tvmonitor ap: 0.6981047903116634
mAP: 0.757891329066908
GPU inference time (GTX1080Ti): 23ms
CPU inference time (i7-8550U): 168ms
Model size: 77M
paper:
- YOLOv3: An Incremental Improvement
- An Analysis of Scale Invariance in Object Detection - SNIP
- Scale-Aware Trident Networks for Object Detection
- Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
- Bag of Freebies for Training Object Detection Neural Networks
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
- MobileNetV2: Inverted Residuals and Linear Bottlenecks