Skip to content

Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

License

Notifications You must be signed in to change notification settings

LaLaLailalai/FastDPM_pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models".

FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. See paper via this link.

Pretrained models

Download checkpoints from this link and this link. Put them under checkpoints\ema_diffusion_${dataset_name}_model\model.ckpt, where ${dataset_name} is cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat.

Usage

General command: python generate.py -ema -name ${dataset_name} -approxdiff ${approximate_diffusion_process} -kappa ${kappa} -S ${FastDPM_length} -schedule ${noise_level_schedule} -n ${number_to_generate} -bs ${batchsize} -gpu ${gpu_index}

  • ${dataset_name}: cifar10, celeba64, lsun_bedroom, lsun_church, or lsun_cat
  • ${approximate_diffusion_process}: VAR or STEP
  • ${kappa}: a real value between 0 and 1
  • ${FastDPM_length}: an integer between 1 and 1000; 10, 20, 50, 100 used in paper.
  • ${noise_level_schedule}: linear or quadratic

CIFAR-10

Below are commands to generate CIFAR-10 images.

  • Standard DDPM generation: python generate.py -ema -name cifar10 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff STEP -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 1.0 -S 50 -schedule quadratic -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name cifar10 -approxdiff VAR -kappa 0.0 -S 50 -schedule quadratic -n 16 -bs 16

CelebA

Below are commands to generate CelebA images.

  • Standard DDPM generation: python generate.py -ema -name celeba64 -approxdiff STD -n 16 -bs 16
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 16 -bs 16
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name celeba64 -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 16 -bs 16

LSUN_bedroom

Below are commands to generate LSUN bedroom images.

  • Standard DDPM generation: python generate.py -ema -name lsun_bedroom -approxdiff STD -n 8 -bs 8
  • FastDPM generation (STEP + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (STEP + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff STEP -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDPM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 1.0 -S 50 -schedule linear -n 8 -bs 8
  • FastDPM generation (VAR + DDIM-rev): python generate.py -ema -name lsun_bedroom -approxdiff VAR -kappa 0.0 -S 50 -schedule linear -n 8 -bs 8

Note

To generate 50K samples, set -n 50000 and batchsize (-bs) divisible by 50K.

Compute FID

To compute FID of generated samples, first make sure there are 50K images, and then run

  • python FID.py -ema -name cifar10 -approxdiff STEP -kappa 1.0 -S 50 -schedule quadratic

Code References

About

Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%