Skip to content

The official Pytorch implementation of the paper "Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator" (ACL 2023 Findings)

Notifications You must be signed in to change notification settings

LUMIA-Group/FourierTransformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

FourierTransformer

This is the official Pytorch implementation of paper Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator

Install

  • Pytorch version >= 1.13.0
  • Fairseq version >= 0.12.3
git clone https://github.com/LUMIA-Group/FourierTransformer.git
cd FourierTransformer
pip install -e .

For faster training, install NVIDIA's apex library following fairseq.

Experiments

# Download files for preprocessing

wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'

Further Pretraining on Pile

  1. Download the Pile dataset from here.
  2. Preprocess the Pile:
    # BPE
    for SPLIT in train val test; do \
     python -m examples.roberta.multiprocessing_bpe_encoder \
         --encoder-json encoder.json \
         --vocab-bpe vocab.bpe \
         --inputs pile/${SPLIT}.raw.en \
         --outputs pile/${SPLIT}.bpe.en \
         --keep-empty \
         --workers 120; \
    done
    
    # Binarize
    fairseq-preprocess \
     --only-source \
     --source-lang "en" \
     --srcdict dict.txt \
     --trainpref pile/train.bpe \
     --validpref pile/val.bpe \
     --testpref pile/test.bpe \
     --destdir pile-bin \
     --workers 60
    
    rename files in pile-bin by removing ".en".
    
  3. Script to further pretrain Fourier-Bart (in our paper, we randomly sliced 10G data from the Pile to conduct further pretraining).

CNN-Dailymail

  1. Download, Preprocess and Binarize: Follow this script.

  2. Fine-tuning Fourier Transformer on CNN-DM summarization task:

    cd Summarization
    sh submits/cnn-dm.sh
  3. Evaluate:
    For calculating rouge, install files2rouge from here.

    sh submits/eval-cnn-dm.sh
    

ELI5

  1. Download, Preprocess and Binarize: Follow this script.

  2. Fine-tuning Fourier Transformer on ELI5 QA task:

    cd Summarization
    sh submits/eli5.sh
  3. Evaluate:

    sh submits/eval_eli5.sh
    

LRA

As mentioned in our paper, the code for LRA is build from this repository. Please follow the scripts there to prepare the datasets.

To run LRA experiments,

cd LRA/code
sh run_tasks.sh

Feel free to play with different settings by modifying lra_config.py

About

The official Pytorch implementation of the paper "Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator" (ACL 2023 Findings)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published