Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Automatic Differentiation #82

Merged
merged 26 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 12 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,24 +7,34 @@ version = "0.11.2"
HalfIntegers = "f0d1745a-41c9-11e9-1dd9-e5d34d218721"
LRUCache = "8ac3fa9e-de4c-5943-b1dc-09c6b5f20637"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
PackageExtensionCompat = "65ce6f38-6b18-4e1d-a461-8949797d7930"
Strided = "5e0ebb24-38b0-5f93-81fe-25c709ecae67"
TensorOperations = "6aa20fa7-93e2-5fca-9bc0-fbd0db3c71a2"
TupleTools = "9d95972d-f1c8-5527-a6e0-b4b365fa01f6"
VectorInterface = "409d34a3-91d5-4945-b6ec-7529ddf182d8"
WignerSymbols = "9f57e263-0b3d-5e2e-b1be-24f2bb48858b"

[weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"

[extensions]
TensorKitChainRulesCoreExt = "ChainRulesCore"

[compat]
HalfIntegers = "1"
LRUCache = "1.0.2"
Strided = "2"
TensorOperations = "4.0.5"
TensorOperations = "4.0.6"
TupleTools = "1.1"
VectorInterface = "0.4"
WignerSymbols = "1,2"
julia = "1.6"

[extras]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ChainRulesTestUtils = "cdddcdb0-9152-4a09-a978-84456f9df70a"
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000"
HalfIntegers = "f0d1745a-41c9-11e9-1dd9-e5d34d218721"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Expand All @@ -34,4 +44,4 @@ TestExtras = "5ed8adda-3752-4e41-b88a-e8b09835ee3a"
WignerSymbols = "9f57e263-0b3d-5e2e-b1be-24f2bb48858b"

[targets]
test = ["Combinatorics", "HalfIntegers", "LinearAlgebra", "Random", "TensorOperations", "Test", "TestExtras", "WignerSymbols"]
test = ["Combinatorics", "HalfIntegers", "LinearAlgebra", "Random", "TensorOperations", "Test", "TestExtras", "WignerSymbols", "ChainRulesCore", "ChainRulesTestUtils", "FiniteDifferences"]
340 changes: 340 additions & 0 deletions ext/TensorKitChainRulesCoreExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
module TensorKitChainRulesCoreExt

using TensorOperations
using TensorKit
using ChainRulesCore
using LinearAlgebra
using TupleTools

# Utility
# -------

_conj(conjA::Symbol) = conjA == :C ? :N : :C
trivtuple(N) = ntuple(identity, N)

function _repartition(p::IndexTuple, N₁::Int)
length(p) >= N₁ ||
throw(ArgumentError("cannot repartition $(typeof(p)) to $N₁, $(length(p) - N₁)"))
return p[1:N₁], p[(N₁ + 1):end]
end
_repartition(p::Index2Tuple, N₁::Int) = _repartition(linearize(p), N₁)
function _repartition(p::Union{IndexTuple,Index2Tuple}, ::Index2Tuple{N₁}) where {N₁}
return _repartition(p, N₁)
end
function _repartition(p::Union{IndexTuple,Index2Tuple},
::AbstractTensorMap{<:Any,N₁}) where {N₁}
return _repartition(p, N₁)
end

TensorKit.block(t::ZeroTangent, c::Sector) = t
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This seems a bit suspicious? Why is this needed?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is mostly to avoid having to manually deal with the ZeroTangent type. For example, a QR decomposition where the final result does not depend on R, would generate a ZeroTangent for dR, which is just an abstract representation that behaves as the zero vector in any (co)vectorspace. As some of the rrules are implemented "blockwise", this would either require manually checking if a tangent is a ZeroTangent, or, which is what I chose to do, rely on the hope that the compiler would recognize that the blockwise operation results in ZeroTangents anyways, and thus automatically takes care of this


# Constructors
# ------------

@non_differentiable TensorKit.TensorMap(f::Function, storagetype, cod, dom)
lkdvos marked this conversation as resolved.
Show resolved Hide resolved
@non_differentiable TensorKit.isomorphism(args...)
@non_differentiable TensorKit.isometry(args...)
@non_differentiable TensorKit.unitary(args...)

function ChainRulesCore.rrule(::Type{<:TensorMap}, d::DenseArray, args...)
function TensorMap_pullback(Δt)
∂d = convert(Array, Δt)
return NoTangent(), ∂d, fill(NoTangent(), length(args))...
end
return TensorMap(d, args...), TensorMap_pullback
end

function ChainRulesCore.rrule(::typeof(convert), T::Type{<:Array}, t::AbstractTensorMap)
A = convert(T, t)
function convert_pullback(ΔA)
∂t = TensorMap(ΔA, codomain(t), domain(t))
return NoTangent(), NoTangent(), ∂t
end
return A, convert_pullback
end

function ChainRulesCore.rrule(::typeof(Base.copy), t::AbstractTensorMap)
copy_pullback(Δt) = NoTangent(), Δt
return copy(t), copy_pullback
end

ChainRulesCore.ProjectTo(::T) where {T<:AbstractTensorMap} = ProjectTo{T}()
(::ProjectTo{T})(x::AbstractTensorMap) where {T<:AbstractTensorMap} = convert(T, x)

# Base Linear Algebra
# -------------------

function ChainRulesCore.rrule(::typeof(+), a::AbstractTensorMap, b::AbstractTensorMap)
plus_pullback(Δc) = NoTangent(), Δc, Δc
return a + b, plus_pullback
end

function ChainRulesCore.rrule(::typeof(-), a::AbstractTensorMap, b::AbstractTensorMap)
minus_pullback(Δc) = NoTangent(), Δc, -Δc
return a - b, minus_pullback
end

function ChainRulesCore.rrule(::typeof(*), a::AbstractTensorMap, b::AbstractTensorMap)
times_pullback(Δc) = NoTangent(), @thunk(Δc * b'), @thunk(a' * Δc)
return a * b, times_pullback
end

function ChainRulesCore.rrule(::typeof(*), a::AbstractTensorMap, b::Number)
times_pullback(Δc) = NoTangent(), @thunk(Δc * b'), @thunk(dot(a, Δc))
return a * b, times_pullback
end

function ChainRulesCore.rrule(::typeof(*), a::Number, b::AbstractTensorMap)
times_pullback(Δc) = NoTangent(), @thunk(dot(b, Δc)), @thunk(a' * Δc)
return a * b, times_pullback
end

function ChainRulesCore.rrule(::typeof(permute), tsrc::AbstractTensorMap, p::Index2Tuple)
function permute_pullback(Δtdst)
invp = TensorKit._canonicalize(TupleTools.invperm(linearize(p)), tsrc)
return NoTangent(), permute(unthunk(Δtdst), invp), NoTangent()
end
return permute(tsrc, p), permute_pullback
end

# LinearAlgebra
# -------------

function ChainRulesCore.rrule(::typeof(tr), A::AbstractTensorMap)
tr_pullback(Δtr) = NoTangent(), Δtr * id(domain(A))
return tr(A), tr_pullback
end

function ChainRulesCore.rrule(::typeof(adjoint), A::AbstractTensorMap)
adjoint_pullback(Δadjoint) = NoTangent(), adjoint(unthunk(Δadjoint))
return adjoint(A), adjoint_pullback
end

function ChainRulesCore.rrule(::typeof(dot), a::AbstractTensorMap, b::AbstractTensorMap)
dot_pullback(Δd) = NoTangent(), @thunk(b * Δd'), @thunk(a * Δd)
return dot(a, b), dot_pullback
end

function ChainRulesCore.rrule(::typeof(norm), a::AbstractTensorMap, p)
p == 2 || error("currently only implemented for p = 2")
n = norm(a, p)
norm_pullback(Δn) = NoTangent(), a * (Δn' + Δn) / (n * 2), NoTangent()
return n, norm_pullback
end

# Factorizations
# --------------

function ChainRulesCore.rrule(::typeof(TensorKit.tsvd!), t::AbstractTensorMap; kwargs...)
U, S, V, ϵ = tsvd(t; kwargs...)

function tsvd!_pullback((ΔU, ΔS, ΔV, Δϵ))
∂t = similar(t)
for (c, b) in blocks(∂t)
copyto!(b,
svd_rev(block(U, c), block(S, c), block(V, c),
block(ΔU, c), block(ΔS, c), block(ΔV, c)))
end

return NoTangent(), ∂t
end

return (U, S, V, ϵ), tsvd!_pullback
end

"""
svd_rev(U, S, V, ΔU, ΔS, ΔV; tol=eps(real(scalartype(Σ)))^(4 / 5))

Implements the following back propagation formula for the SVD:

```math
ΔA = UΔSV' + U(J + J')SV' + US(K + K')V' + \\frac{1}{2}US^{-1}(L' - L)V'\\
J = F ∘ (U'ΔU), \\qquad K = F ∘ (V'ΔV), \\qquad L = I ∘ (V'ΔV)\\
F_{i ≠ j} = \\frac{1}{s_j^2 - s_i^2}\\
F_{ii} = 0
```

# References

Wan, Zhou-Quan, and Shi-Xin Zhang. 2019. “Automatic Differentiation for Complex Valued SVD.” https://doi.org/10.48550/ARXIV.1909.02659.
"""
function svd_rev(U::AbstractMatrix, S::AbstractMatrix, V::AbstractMatrix, ΔU, ΔS, ΔV;
atol::Real=0,
rtol::Real=atol > 0 ? 0 : eps(scalartype(S))^(3 / 4))
# project out gauge invariance dependence?
# ΔU * U + ΔV * V' = 0

tol = atol > 0 ? atol : rtol * S[1, 1]
F = _invert_S²(S, tol)
S⁻¹ = pinv(S; atol=tol)

term = Diagonal(diag(ΔS))

J = F .* (U' * ΔU)
term += (J + J') * S
VΔV = (V * ΔV')
K = F .* VΔV
term += S * (K + K')

if scalartype(U) <: Complex && !(ΔV isa ZeroTangent) && !(ΔU isa ZeroTangent)
L = LinearAlgebra.Diagonal(diag(VΔV))
term += 0.5 * S⁻¹ * (L' - L)
end

ΔA = U * term * V

if size(U, 1) != size(V, 2)
UUd = U * U'
VdV = V' * V
ΔA += (one(UUd) - UUd) * ΔU * S⁻¹ * V + U * S⁻¹ * ΔV * (one(VdV) - VdV)
end

return ΔA
end

function _invert_S²(S::AbstractMatrix{T}, tol::Real) where {T<:Real}
F = similar(S)
@inbounds for i in axes(F, 1), j in axes(F, 2)
F[i, j] = if i == j
zero(T)
else
sᵢ, sⱼ = S[i, i], S[j, j]
1 / (abs(sⱼ - sᵢ) < tol ? tol : sⱼ^2 - sᵢ^2)
end
end
return F
end

function ChainRulesCore.rrule(::typeof(leftorth!), t::AbstractTensorMap; alg=QRpos())
alg isa TensorKit.QR || alg isa TensorKit.QRpos || error("only QR and QRpos supported")
Q, R = leftorth(t; alg)
leftorth!_pullback((ΔQ, ΔR)) = NoTangent(), qr_pullback!(similar(t), t, Q, R, ΔQ, ΔR)
leftorth!_pullback(::Tuple{ZeroTangent,ZeroTangent}) = ZeroTangent()
return (Q, R), leftorth!_pullback
end

function ChainRulesCore.rrule(::typeof(rightorth!), t::AbstractTensorMap; alg=LQpos())
alg isa TensorKit.LQ || alg isa TensorKit.LQpos || error("only LQ and LQpos supported")
L, Q = rightorth(t; alg)
rightorth!_pullback((ΔL, ΔQ)) = NoTangent(), lq_pullback!(similar(t), t, L, Q, ΔL, ΔQ)
rightorth!_pullback(::Tuple{ZeroTangent,ZeroTangent}) = ZeroTangent()
return (L, Q), rightorth!_pullback
end

"""
copyltu!(A::AbstractMatrix)

Copy the conjugated lower triangular part of `A` to the upper triangular part.
"""
function copyltu!(A::AbstractMatrix)
m, n = size(A)
for i in axes(A, 1)
A[i, i] = real(A[i, i])
@inbounds for j in (i + 1):n
A[i, j] = conj(A[j, i])
end
end
return A
end

function qr_pullback!(ΔA::AbstractTensorMap{S}, t::AbstractTensorMap{S},
Q::AbstractTensorMap{S}, R::AbstractTensorMap{S}, ΔQ, ΔR) where {S}
for (c, b) in blocks(ΔA)
qr_pullback!(b, block(t, c), block(Q, c), block(R, c), block(ΔQ, c), block(ΔR, c))
end
return ΔA
end

function qr_pullback!(ΔA, A, Q::M, R::M, ΔQ, ΔR) where {M<:AbstractMatrix}
m = qr_rank(R)
n = size(R, 2)

if n == m # full rank
q = view(Q, :, 1:m)
Δq = view(ΔQ, :, 1:m)
r = view(R, 1:m, :)
Δr = view(ΔR, 1:m, :)
ΔA = qr_pullback_fullrank!(ΔA, q, r, Δq, Δr)
else
q = view(Q, :, 1:m)
Δq = view(ΔQ, :, 1:m) + view(A, :, (m + 1):n) * view(ΔR, :, (m + 1):n)'
r = view(R, 1:m, 1:m)
Δr = view(ΔR, 1:m, 1:m)

qr_pullback_fullrank!(view(ΔA, :, 1:m), q, r, Δq, Δr)
ΔA[:, (m + 1):n] = q * view(ΔR, :, (m + 1):n)
end

return ΔA
end

function qr_pullback_fullrank!(ΔA, Q, R, ΔQ, ΔR)
b = ΔQ + Q * copyltu!(R * ΔR' - ΔQ' * Q)
return adjoint!(ΔA, LinearAlgebra.LAPACK.trtrs!('U', 'N', 'N', R, copy(adjoint(b))))
end

function lq_pullback!(ΔA::AbstractTensorMap{S}, t::AbstractTensorMap{S},
L::AbstractTensorMap{S}, Q::AbstractTensorMap{S}, ΔL, ΔQ) where {S}
for (c, b) in blocks(ΔA)
lq_pullback!(b, block(t, c), block(L, c), block(Q, c), block(ΔL, c), block(ΔQ, c))
end
return ΔA
end

function lq_pullback!(ΔA, A, L::M, Q::M, ΔL, ΔQ) where {M<:AbstractMatrix}
m = qr_rank(L)
n = size(L, 1)

if n == m # full rank
l = view(L, :, 1:m)
Δl = view(ΔL, :, 1:m)
q = view(Q, 1:m, :)
Δq = view(ΔQ, 1:m, :)
ΔA = lq_pullback_fullrank!(ΔA, l, q, Δl, Δq)
else
l = view(L, 1:m, 1:m)
Δl = view(ΔL, 1:m, 1:m)
q = view(Q, 1:m, :)
Δq = view(ΔQ, 1:m, :) + view(ΔL, (m + 1):n, 1:m)' * view(A, (m + 1):n, :)

lq_pullback_fullrank!(view(ΔA, 1:m, :), l, q, Δl, Δq)
ΔA[(m + 1):n, :] = view(ΔL, (m + 1):n, :) * q
end

return ΔA
end

function lq_pullback_fullrank!(ΔA, L, Q, ΔL, ΔQ)
mul!(ΔA, copyltu!(L' * ΔL - ΔQ * Q'), Q)
axpy!(true, ΔQ, ΔA)
return LinearAlgebra.LAPACK.trtrs!('L', 'C', 'N', L, ΔA)
end

function qr_rank(r::AbstractMatrix)
Base.require_one_based_indexing(r)
m, n = size(r)
r₀ = r[1, 1]
i = findfirst(x -> abs(x / r₀) < 1e-12, diag(r))
return isnothing(i) ? min(m, n) : i - 1
end

function ChainRulesCore.rrule(::typeof(Base.convert), ::Type{Dict}, t::AbstractTensorMap)
out = convert(Dict, t)
function convert_pullback(c)
if haskey(c, :data) # :data is the only thing for which this dual makes sense
dual = copy(out)
dual[:data] = c[:data]
return (NoTangent(), NoTangent(), convert(TensorMap, dual))
else
# instead of zero(t) you can also return ZeroTangent(), which is type unstable
return (NoTangent(), NoTangent(), zero(t))
end
end
return out, convert_pullback
end
function ChainRulesCore.rrule(::typeof(Base.convert), ::Type{TensorMap},
t::Dict{Symbol,Any})
return convert(TensorMap, t), v -> (NoTangent(), NoTangent(), convert(Dict, v))
end

end
Loading