LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration
Jumabek Alikhanov, Dilshod Obidov, Hakil Kim
LITE (Lightweight Integrated Tracking-Feature Extraction) introduces a groundbreaking approach to enhance ReID-based Multi-Object Tracking (MOT) systems. By integrating appearance feature extraction directly into the detection pipeline, LITE significantly improves computational efficiency while maintaining robust performance. Utilizing CNN-based object detectors like YOLOv8 and YOLO11, LITE enables real-time tracking, making it ideal for resource-constrained environments.
- Efficient Integration: Combines appearance feature extraction within the detection process.
- Lightweight Design: Tailored for real-time applications on resource-limited devices.
- Performance Optimization: Demonstrates notable FPS improvements across multiple trackers while retaining competitive accuracy.
We evaluated LITE using YOLOv8m with the following settings:
- Confidence Threshold: 0.25
- Input Resolution: 1280
Tracker | MOT17 HOTA ↑ | MOT17 FPS ↑ | MOT20 HOTA ↑ | MOT20 FPS ↑ |
---|---|---|---|---|
DeepSORT | 43.7 | 10.5 | 24.4 | 8.5 |
StrongSORT | 44.5 | 4.5 | 26.1 | 2.6 |
Deep OC-SORT | 43.7 | 10.3 | 24.9 | 8.9 |
BoTSORT | 40.8 | 10.6 | 21.1 | 9.4 |
LITE:DeepSORT | 43.0 | 26.7 | 25.2 | 15.9 |
LITE:StrongSORT | 42.4 | 29.7 | 25.2 | 22.9 |
LITE:Deep OC-SORT | 43.4 | 34.8 | 25.4 | 19.6 |
LITE:BoTSORT | 40.8 | 38.2 | 21.1 | 31.8 |
Follow these steps to set up the LITE tracking system:
# Clone the LITE Tracker Repository
git clone https://github.com/Jumabek/LITE.git
cd LITE
# Create and activate a virtual environment
python3.10 -m venv myenv
source myenv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Clone supplementary repositories
git clone https://github.com/Jumabek/ultralytics.git
git clone https://github.com/humblebeeintel/yolo_tracking.git
git clone https://github.com/humblebeeintel/TrackEval
bash scripts/setup_fastreid.sh
Download the prepared datasets from this link and organize them as follows:
LITE/datasets
|-- MOT
| |-- train
| |-- test
|-- PersonPath22
| |-- test
|-- VIRAT-S
| |-- train
|-- KITTI
|-- train
|-- test
Download the required checkpoints from this link and place them under LITE/checkpoints
:
checkpoints
└── FastReID
├── bagtricks_S50.yml
├── Base-bagtricks.yml
├── deepsort
│ ├── ckpt.t7
│ └── original_ckpt.t7
└── DukeMTMC_BoT-S50.pth
bash scripts/run_experiment.sh -d <DATASET> -s <SPLIT> -t <TRACKER> -m <YOLO_MODEL>
# TRACKER options: "SORT", "LITEDeepSORT", "DeepSORT", "StrongSORT", "LITEStrongSORT", "OCSORT", "Bytetrack", "DeepOCSORT", "LITEDeepOCSORT", "BoTSORT", "LITEBoTSORT"
# YOLO_MODEL options: all models of YOLO from yolov8 to yolo11
python reid.py --dataset <DATASET> --seq_name <SEQ_NAME> --split <SPLIT> --tracker <ReID_MODEL> --save
bash demo/download_solutions_demo_videos.sh
python demo.py --source demo/VIRAT_S_010204_07_000942_000989.mp4
python solutions.py \
--source videos/shortened_enterance.mp4 \
--solution object_counter heatmap
python solutions.py \
--source videos/parking.mp4 \
--solution parking_management
If you use LITE in your research, please cite our work:
@misc{alikhanov2024liteparadigmshiftmultiobject,
title={LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration},
author={Jumabek Alikhanov and Dilshod Obidov and Hakil Kim},
year={2024},
eprint={2409.04187},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.04187},
}