Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove redundancy of triangulation #329

Merged
merged 3 commits into from
Feb 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/triangulation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ function triangulation_indices(p::Polyhedron)
incident_idx = Dict(h => Set(incidentpointindices(p, h)) for h in h_idx)
is_weak_adjacent = Dict((hi, hj) => !isempty(incident_idx[hi] ∩ incident_idx[hj]) for hi in h_idx for hj in h_idx)
_triangulation(Δs, Δ, v_idx, h_idx, incident_idx, is_weak_adjacent, fulldim(p))
return Δs
return unique(Δs)
end
function triangulation(p::Polyhedron)
return map(Δ -> vrep(get.(p, Δ)), triangulation_indices(p))
Expand Down
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -38,3 +38,4 @@ for (arith, T) in (("floating point", Float64), ("exact", Rational{BigInt}))
end

include("../examples/test_examples.jl")
include("volume.jl")
163 changes: 163 additions & 0 deletions test/volume.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
using Test
using Polyhedra

# simple algorithm for calculating area of polygons
# requires vertices to be sorted (counter)clockwise
function shoelace(verts::AbstractMatrix{<:Real})
@assert size(verts, 1) == 2 "shoelace only works for polygons"
xs = verts[begin,:]
ys = verts[end,:]
A = (ys[end]+ys[begin])*(xs[end]-xs[begin])
for i in axes(verts,2)[begin:end-1]
A += (ys[i]+ys[i+1])*(xs[i]-xs[i+1])
end
A = abs(A)
A isa AbstractFloat ? A/2 : A//2
end
isvertsapprox(verts, points) = all(any(isapprox(p, v) for v in verts) for p in points)

# issue 285: area of square [-0.5, -0.5] x [0.5, 0.5]
function check_vol_issue285(lib)
ineq = [
HalfSpace([-2.0, -2.0], 4.0),
HalfSpace([-2.0, -1.0], 2.5),
HalfSpace([-2.0, 0.0], 2.0),
HalfSpace([-2.0, 1.0], 2.5),
HalfSpace([-2.0, 2.0], 4.0),
HalfSpace([-1.0, -2.0], 2.5),
HalfSpace([-1.0, -1.0], 1.0),
HalfSpace([-1.0, 0.0], 0.5),
HalfSpace([-1.0, 1.0], 1.0),
HalfSpace([-1.0, 2.0], 2.5),
HalfSpace([0.0, -2.0], 2.0),
HalfSpace([0.0, -1.0], 0.5),
HalfSpace([0.0, 0.0], 0.0),
HalfSpace([0.0, 1.0], 0.5),
HalfSpace([0.0, 2.0], 2.0),
HalfSpace([1.0, -2.0], 2.5),
HalfSpace([1.0, -1.0], 1.0),
HalfSpace([1.0, 0.0], 0.5),
HalfSpace([1.0, 1.0], 1.0),
HalfSpace([1.0, 2.0], 2.5),
HalfSpace([2.0, -2.0], 4.0),
HalfSpace([2.0, -1.0], 2.5),
HalfSpace([2.0, 0.0], 2.0),
HalfSpace([2.0, 1.0], 2.5),
HalfSpace([2.0, 2.0], 4.0),
]
square = polyhedron(reduce(intersect, ineq), lib)
sqverts = [-1 1 1 -1; -1 -1 1 1]/2
@assert isvertsapprox(eachcol(sqverts), points(square))
return volume(square) ≈ shoelace(sqverts)
end

# issue 249
function check_vol_issue249_1(lib)
poly = polyhedron(HalfSpace([-1.0, 0.0], 0.0) ∩
HalfSpace([0.0, -1.0], 0.0) ∩
HalfSpace([1.0, 0.0], 1.0) ∩
HalfSpace([0.0, 1.0], 1.0) ∩
HalfSpace([-0.2, -0.8], -0.0) ∩
HalfSpace([0.6, 0.4], 0.6), lib)

verts = [1/3 1 0 0; 1 0 0 1]
@assert isvertsapprox(eachcol(verts), points(poly))
return volume(poly) ≈ shoelace(verts)
end

function check_vol_issue249_2(lib)
poly2 = polyhedron(# HalfSpace([-1.0, 0.0], 0.0) ∩
HalfSpace([0.0, -1.0], 0.0) ∩ # Comment here to get correct area
HalfSpace([1.0, 0.0], 1.0) ∩
HalfSpace([0.0, 1.0], 1.0) ∩
HalfSpace([-0.6, -0.4], -0.6) ∩
HalfSpace([0.2, 0.8], 0.95), lib)
verts2 = [1/3 3/4 1 1; 1 1 15/16 0]
@assert isvertsapprox(eachcol(verts2), points(poly2))
return volume(poly2) ≈ shoelace(verts2)
end

function check_vol_issue249_3(lib)
L3 = polyhedron(vrep([
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 1
]),lib)
# reportedly solution taken from https://doi.org/10.1016/j.dam.2018.10.038
return volume(L3) == 1//180
end
# examples similar to Cohen-Hickey paper, table 1
# https://doi.org/10.1145/322139.322141
function check_vol_simplex(n, lib)
s = polyhedron(vrep([i==j for i in 0:n, j in 1:n]), lib)
return volume(s) == 1//factorial(n)
end


function check_vol_isocahedron(lib)
ϕ = (1 + √5)/2
isoc = polyhedron(vrep([
0 1 ϕ
0 1 -ϕ
0 -1 ϕ
0 -1 -ϕ
1 ϕ 0
1 -ϕ 0
-1 ϕ 0
-1 -ϕ 0
ϕ 0 1
ϕ 0 -1
-ϕ 0 1
-ϕ 0 -1
]), lib)
# https://en.wikipedia.org/wiki/Regular_icosahedron
return volume(isoc) ≈ (5/12)*(3+√5)*2^3
end

function check_vol_dodecahedron(lib)
ϕ = (1 + √5)/2
ϕ² = ϕ^2
dodec = polyhedron(vrep([
ϕ ϕ ϕ
ϕ ϕ -ϕ
ϕ -ϕ ϕ
ϕ -ϕ -ϕ
-ϕ ϕ ϕ
-ϕ ϕ -ϕ
-ϕ -ϕ ϕ
-ϕ -ϕ -ϕ
0 1 ϕ²
0 1 -ϕ²
0 -1 ϕ²
0 -1 -ϕ²
1 ϕ² 0
1 -ϕ² 0
-1 ϕ² 0
-1 -ϕ² 0
ϕ² 0 1
ϕ² 0 -1
-ϕ² 0 1
-ϕ² 0 -1
]), lib)
# https://en.wikipedia.org/wiki/Regular_dodecahedron
return volume(dodec) ≈ (1/4)*(15+7*√5)*2^3
end

@testset "volumes" begin
lib_float = DefaultLibrary{Float64}()
lib_exact = DefaultLibrary{Int}()
@testset "simplex" for n in 1:5
@test check_vol_simplex(n, lib_exact)
end
@test check_vol_issue285(lib_float)
@test check_vol_issue249_1(lib_float)
@test check_vol_issue249_2(lib_float)
@test check_vol_issue249_3(lib_exact)
@test check_vol_isocahedron(lib_float)
@test check_vol_dodecahedron(lib_float)
end
Loading