Skip to content

JasonCWang/evoquer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EVOQUER: Enhancing Temporal Grounding with Video-Pivoted BackQuery Generation

Source code for our paper, "EVOQUER: Enhancing Temporal Grounding with Video-Pivoted BackQuery Generation" (Link), appeared in Visually Grounded Interaction and Language (ViGIL) Workshop 2021.

Our codebase is built on top of LGI model.

Environment Setup

LGI (src/anaconda_environment.md)

Folder and Files

  • data : folder for data. Download from src/scripts/prepare_data.sh
    • charades
    • activitynet
  • src: Yanjun modified version of LGI model (orig from (https://github.com/JonghwanMun/LGI4temporalgrounding))
    • model
      • building_blocks.py: network modules, LGI loss functions
      • abstract_networks.py: abstract methods for LGI, including maintaining best scores record, print_status (for LGI only)
      • LGI.py: network setting for LGI model, inherited class from abstract_networks.py, this function is really important here:
        • prepare_batch_w_pipeline: sampling batch data for pipeline input
    • dataset: folder of dataset loader
      • abstract_dataset.py : abtract methods for data loader
      • anet.py: activitynet data loader (TBD)
      • charades.py: Charades dataloader
    • utils : utility functions
      • eval_utils.py: evaluation codes
    • experiment
      • common_functions.py: function test is for evaluation
  • seq2seq : IBM seq2seq package for translation (orig from (https://github.com/IBM/pytorch-seq2seq))
    • models
      • DecoderRNN.py: RNN modules for decoder
  • VSE : visual embedding source codes from (https://github.com/fartashf/vsepp), re-oraganized into vse_video_enc.py
  • ymls: containing config file (.ymls) as config input to LGI model

VPMT Pipeline python files

  • trainer.py: supervised trainer,including: data loader, train, validate, save checkpoint
  • VPMT.py: VPMT pipeline with LGI, VSE, Translation, and miscellaneous functions (optimizer, forward, update)
  • VPCLS.py: VPMT pipeline with action and object classifcation instead of translation
  • vse_video_enc.py: Visual embedding modules
  • vpmt_config.py configuration

Running

If using simplified translation: prepare translation ground truth by python preprocess_query_simpl_trans.py Then run the training script: python trainer.py >> log_*setting*.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 77.8%
  • Python 22.1%
  • Shell 0.1%