-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
133 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# EMS rule | ||
|
||
## EMS rule for balanced designs | ||
|
||
for model | ||
|
||
$$ | ||
Y_{ijk} = \mu + A_i + B_j + AB_{ij} + \epsilon_{{ij}k} | ||
$$ | ||
|
||
$i=1,\cdots,a,\quad j=1,\cdots,b,\quad k=1,\cdots,n,\quad\varepsilon_{(ij)k}\overset{\text{iid}}{\sim}N(0,\sigma^2)$ | ||
|
||
根據以下過程製作一張表格: | ||
1. 準備一張表格,row 為所有 factor 、交互作用和隨機項目,column 為所有下標及其對應的 factor 是隨機或固定。 | ||
| | i,F | j,R | k,R | | ||
| --------------------- | --- | --- | --- | | ||
| $A_i$ | | | | | ||
| $B_j$ | | | | | ||
| $AB_{ij}$ | | | | | ||
| $\varepsilon_{(ij)k}$ | | | | | ||
|
||
|
||
2. 對於每個 column,如果所對應下標並不在 effect 中,則填充 level 數量。 | ||
| | i,F | j,R | k,R | | ||
| --------------------- | --- | --- | --- | | ||
| $A_i$ | | b | n | | ||
| $B_j$ | a | | n | | ||
| $AB_{ij}$ | | | n | | ||
| $\varepsilon_{(ij)k}$ | | | | | ||
|
||
|
||
3. 將每個 row 裡所有在括號中的下標位置填充 1 。 | ||
| | i,F | j,R | k,R | | ||
| --------------------- | --- | --- | --- | | ||
| $A_i$ | | b | n | | ||
| $B_j$ | a | | n | | ||
| $AB_{ij}$ | | | n | | ||
| $\varepsilon_{(ij)k}$ | 1 | 1 | | | ||
|
||
4. 對於每個 column,如果下標所對應的 factor 是隨機的,則填充 1,如果是固定的,填充 0。 | ||
| | i,F | j,R | k,R | | ||
| --------------------- | --- | --- | --- | | ||
| $A_i$ | 0 | b | n | | ||
| $B_j$ | a | 1 | n | | ||
| $AB_{ij}$ | 0 | 1 | n | | ||
| $\varepsilon_{(ij)k}$ | 1 | 1 | 1 | | ||
|
||
接下來根據以下規則計算 EMS: | ||
1. 忽略該 trt 下標中,括號之外的所有 column (e.g. $A_i$ 忽略 $i$ col,$\varepsilon_{(ij)k}$ 忽略 $k$ col)。 | ||
2. 找到所有包含該 trt 下標的所有 row,將其對應的 column 值相乘。 | ||
3. 篩選出的 row 中,如果包含隨機效應,則其對應的方差為 $\sigma_\tau$,如果都是固定效應,則其對應的方差為 $\phi_\sigma$。 | ||
4. 將 2. 和 3. 的結果相乘,並將每個 row 的結果相加,即為 EMS。 | ||
|
||
| | i,F | j,R | k,R | EMS | | ||
| --------------------- | --- | --- | --- | ---------------------------------------------- | | ||
| $A_i$ | 0 | b | n | $\sigma_\varepsilon^2+n\sigma^2_{AB}+bn\phi_A$ | | ||
| $B_j$ | a | 1 | n | $\sigma_\varepsilon^2+an\sigma_B$ | | ||
| $AB_{ij}$ | 0 | 1 | n | $\sigma_\varepsilon^2+n\sigma_{AB}$ | | ||
| $\varepsilon_{(ij)k}$ | 1 | 1 | 1 | $\sigma_\varepsilon^2$ | | ||
|
||
## ANOVA table with EMS | ||
|
||
| Source | SS | DF | MS | EMS | F-value | $H_0$ | | ||
| ------ | ------------ | ------------------ | ------------------ | ---------------------------------------------- | -------------- | ------------------ | | ||
| A | $a-1$ | $SS_A$ | $MS_A$ | $\sigma_\varepsilon^2+n\sigma^2_{AB}+bn\phi_A$ | $MS_A/MS_{AB}$ | $A$ has no effect | | ||
| B | $b-1$ | $SS_B$ | $MS_B$ | $\sigma_\varepsilon^2+an\sigma_B$ | $MS_B/MS_E$ | $B$ has no effect | | ||
| AB | $(a-1)(b-1)$ | $SS_{AB}$ | $MS_{AB}$ | $\sigma_\varepsilon^2+n\sigma_{AB}$ | $MS_{AB}/MS_E$ | $AB$ has no effect | | ||
| Error | $ab(n-1)$ | $SS_{\varepsilon}$ | $MS_{\varepsilon}$ | $\sigma_\varepsilon^2$ | | | | ||
| Total | $N-1$ | | | | | | | ||
|
||
F-value 的分子需要只比分母多出需要檢定效應的方差項。 | ||
|
||
**Remark**: if $n=1$, i.e. one observation each treatment | ||
|
||
$$ | ||
\implies SS_E=\sum_i\sum_j\sum_k^1(Y_{ijk}-\bar{Y}_{ij.})^2=0 \quad\text{with }df=ab(n-1)=0 | ||
$$ | ||
|
||
i.e. $MS_E$ is not defined. | ||
|
||
--- | ||
|
||
**EX**: | ||
|
||
$$ | ||
Y_{ijkl} = \mu + A_i + B_j + C_k + AB_{ij} + AC_{ik} + BC_{jk} + ABC_{ijk} + \varepsilon_{(ijk)l} | ||
$$ | ||
|
||
| | i,R | j,R | k,R | l,R | EMS | F-value | | ||
| ---------------------- | --- | --- | --- | --- | ------------------------------------------------------------------------------------ | ------------------ | | ||
| $A_i$ | 1 | b | c | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+cn\sigma^2_{AB}+bn\sigma^2_{AC}+bcn\sigma^2_A$ | | | ||
| $B_j$ | a | 1 | c | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+an\sigma^2_{BC}+cn\sigma^2_{AB}+acn\sigma^2_B$ | | | ||
| $C_k$ | a | b | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+an\sigma^2_{BC}+bn\sigma^2_{AC}+abn\sigma^2_C$ | | | ||
| $AB_{ij}$ | 1 | 1 | c | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+cn\sigma^2_{AB}$ | $MS_{AB}/MS_{ABC}$ | | ||
| $AC_{ik}$ | 1 | b | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+bn\sigma^2_{AC}$ | $MS_{AC}/MS_{ABC}$ | | ||
| $BC_{jk}$ | a | 1 | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+an\sigma^2_{BC}$ | $MS_{BC}/MS_{ABC}$ | | ||
| $ABC_{ijk}$ | 1 | 1 | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}$ | $MS_{ABC}/MS_E$ | | ||
| $\varepsilon_{(ijk)l}$ | 1 | 1 | 1 | 1 | $\sigma_\varepsilon^2$ | | | ||
|
||
$\implies$ $H_0:\sigma^2_A=0/\sigma^2_B=0/\sigma^2_C=0$ 並沒有檢定方法。因為沒有可以作為基礎的 EMS。 | ||
|
||
**Remark**: 如果 EMS rule 無法給出 effect 的檢定方法。可以用以下兩種方式: | ||
1. 假設一些 effect/intraction 為 0 。 | ||
2. 用漸進方法得到 F-test。 | ||
|
||
**Remakr**: $\varepsilon_{(ij)k}$ 與 $\varepsilon_{ijk}$ 兩種符號的意義是不同的。前者表示 $k$ 在 $ij$ 效應下得到,意味著獲得數據的 trt 是隨機出現的,後者則代表數據是輪流獲得的。 | ||
|
||
**Remark**: 計算 SS | ||
|
||
$$ | ||
\begin{align*} | ||
(n-1)S^2&=\sum^n(X_i-\bar{X})^2\\ | ||
&=\sum^nX_i^2-n\bar{X}^2\\ | ||
&=\sum^nX_i^2-n\left(\frac{1}{n}\sum^nX_i\right)^2\\ | ||
&=\sum^nX_i^2-\frac{1}{n}\left(\sum^nX_i\right)^2 | ||
\end{align*} | ||
$$ | ||
|
||
$$ | ||
\begin{align*} | ||
\implies SS_E&=\sum_i^k\sum_j^n(Y_{ij}-\bar{Y}_{i\cdot})^2\\ | ||
&=\sum_i^k\sum_j^nY_{ij}^2-\frac{1}{n}\sum_i^kY_{i\cdot}^2\\ | ||
SS_{trt}&=\sum_i^k\sum_j^n(Y_{i\cdot}-\bar{Y}_{\cdot\cdot})^2\\ | ||
&=\sum_i^k\frac{Y_{i\cdot}^2}{n}-\frac{Y_{\cdot\cdot}^2}{N} | ||
\end{align*} | ||
$$ |