Skip to content

Commit

Permalink
add: ems rule
Browse files Browse the repository at this point in the history
  • Loading branch information
JamboChen committed Nov 1, 2024
1 parent 2f0afc6 commit 1dabf1d
Show file tree
Hide file tree
Showing 2 changed files with 133 additions and 7 deletions.
14 changes: 7 additions & 7 deletions math/experimental_designs/crd.md
Original file line number Diff line number Diff line change
Expand Up @@ -535,13 +535,13 @@ $\implies E(MS_A)=E(SS_A)/(a-1)=bn\phi_A+\sigma_\varepsilon^2$

---

| Source | df | SS | MS=SS/df | EMS=E(MS) | F-value | p-value |
| ------ | ---------- | ---- | -------- | ---------------------------------- | -------------- | ------------------------------- |
| A | a-1 | SSA | $MS_A$ | $\sigma_\varepsilon^2+bn\phi_A$ | $MS_A/MS_E$ | $P(F_{a-1,ab(n-1)}>f^*)$ |
| B | b-1 | SSB | $MS_B$ | $\sigma_\varepsilon^2+an\phi_B$ | $MS_B/MS_E$ | $P(F_{b-1,ab(n-1)}>f^*)$ |
| AB | (a-1)(b-1) | SSAB | $MS_{AB}$ | $\sigma_\varepsilon^2+n\phi_{AB}+$ | $MS_{AB}/MS_E$ | $P(F_{(a-1)(b-1),ab(n-1)}>f^*)$ |
| Error | ab(n-1) | SSE | $MS_E$ | $\sigma_\varepsilon^2$ | | |
| Total | abn-1 | SST | | | | |
| Source | df | SS | MS=SS/df | EMS=E(MS) | F-value | p-value |
| ------ | ---------- | ---- | --------- | ---------------------------------- | -------------- | ------------------------------- |
| A | a-1 | SSA | $MS_A$ | $\sigma_\varepsilon^2+bn\phi_A$ | $MS_A/MS_E$ | $P(F_{a-1,ab(n-1)}>f^*)$ |
| B | b-1 | SSB | $MS_B$ | $\sigma_\varepsilon^2+an\phi_B$ | $MS_B/MS_E$ | $P(F_{b-1,ab(n-1)}>f^*)$ |
| AB | (a-1)(b-1) | SSAB | $MS_{AB}$ | $\sigma_\varepsilon^2+n\phi_{AB}+$ | $MS_{AB}/MS_E$ | $P(F_{(a-1)(b-1),ab(n-1)}>f^*)$ |
| Error | ab(n-1) | SSE | $MS_E$ | $\sigma_\varepsilon^2$ | | |
| Total | abn-1 | SST | | | | |

- $P_A$: for $H_0$: No A effect $\iff\phi_A=0$ v.s. $H_1$: Sig. A effect $\iff\phi_A>0$
- $P_B$: for $H_0$: No B effect $\iff\phi_B=0$ v.s. $H_1$: Sig. B effect $\iff\phi_B>0$
Expand Down
126 changes: 126 additions & 0 deletions math/experimental_designs/ems_rule.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# EMS rule

## EMS rule for balanced designs

for model

$$
Y_{ijk} = \mu + A_i + B_j + AB_{ij} + \epsilon_{{ij}k}
$$

$i=1,\cdots,a,\quad j=1,\cdots,b,\quad k=1,\cdots,n,\quad\varepsilon_{(ij)k}\overset{\text{iid}}{\sim}N(0,\sigma^2)$

根據以下過程製作一張表格:
1. 準備一張表格,row 為所有 factor 、交互作用和隨機項目,column 為所有下標及其對應的 factor 是隨機或固定。
| | i,F | j,R | k,R |
| --------------------- | --- | --- | --- |
| $A_i$ | | | |
| $B_j$ | | | |
| $AB_{ij}$ | | | |
| $\varepsilon_{(ij)k}$ | | | |


2. 對於每個 column,如果所對應下標並不在 effect 中,則填充 level 數量。
| | i,F | j,R | k,R |
| --------------------- | --- | --- | --- |
| $A_i$ | | b | n |
| $B_j$ | a | | n |
| $AB_{ij}$ | | | n |
| $\varepsilon_{(ij)k}$ | | | |


3. 將每個 row 裡所有在括號中的下標位置填充 1 。
| | i,F | j,R | k,R |
| --------------------- | --- | --- | --- |
| $A_i$ | | b | n |
| $B_j$ | a | | n |
| $AB_{ij}$ | | | n |
| $\varepsilon_{(ij)k}$ | 1 | 1 | |

4. 對於每個 column,如果下標所對應的 factor 是隨機的,則填充 1,如果是固定的,填充 0。
| | i,F | j,R | k,R |
| --------------------- | --- | --- | --- |
| $A_i$ | 0 | b | n |
| $B_j$ | a | 1 | n |
| $AB_{ij}$ | 0 | 1 | n |
| $\varepsilon_{(ij)k}$ | 1 | 1 | 1 |

接下來根據以下規則計算 EMS:
1. 忽略該 trt 下標中,括號之外的所有 column (e.g. $A_i$ 忽略 $i$ col,$\varepsilon_{(ij)k}$ 忽略 $k$ col)。
2. 找到所有包含該 trt 下標的所有 row,將其對應的 column 值相乘。
3. 篩選出的 row 中,如果包含隨機效應,則其對應的方差為 $\sigma_\tau$,如果都是固定效應,則其對應的方差為 $\phi_\sigma$。
4. 將 2. 和 3. 的結果相乘,並將每個 row 的結果相加,即為 EMS。

| | i,F | j,R | k,R | EMS |
| --------------------- | --- | --- | --- | ---------------------------------------------- |
| $A_i$ | 0 | b | n | $\sigma_\varepsilon^2+n\sigma^2_{AB}+bn\phi_A$ |
| $B_j$ | a | 1 | n | $\sigma_\varepsilon^2+an\sigma_B$ |
| $AB_{ij}$ | 0 | 1 | n | $\sigma_\varepsilon^2+n\sigma_{AB}$ |
| $\varepsilon_{(ij)k}$ | 1 | 1 | 1 | $\sigma_\varepsilon^2$ |

## ANOVA table with EMS

| Source | SS | DF | MS | EMS | F-value | $H_0$ |
| ------ | ------------ | ------------------ | ------------------ | ---------------------------------------------- | -------------- | ------------------ |
| A | $a-1$ | $SS_A$ | $MS_A$ | $\sigma_\varepsilon^2+n\sigma^2_{AB}+bn\phi_A$ | $MS_A/MS_{AB}$ | $A$ has no effect |
| B | $b-1$ | $SS_B$ | $MS_B$ | $\sigma_\varepsilon^2+an\sigma_B$ | $MS_B/MS_E$ | $B$ has no effect |
| AB | $(a-1)(b-1)$ | $SS_{AB}$ | $MS_{AB}$ | $\sigma_\varepsilon^2+n\sigma_{AB}$ | $MS_{AB}/MS_E$ | $AB$ has no effect |
| Error | $ab(n-1)$ | $SS_{\varepsilon}$ | $MS_{\varepsilon}$ | $\sigma_\varepsilon^2$ | | |
| Total | $N-1$ | | | | | |

F-value 的分子需要只比分母多出需要檢定效應的方差項。

**Remark**: if $n=1$, i.e. one observation each treatment

$$
\implies SS_E=\sum_i\sum_j\sum_k^1(Y_{ijk}-\bar{Y}_{ij.})^2=0 \quad\text{with }df=ab(n-1)=0
$$

i.e. $MS_E$ is not defined.

---

**EX**:

$$
Y_{ijkl} = \mu + A_i + B_j + C_k + AB_{ij} + AC_{ik} + BC_{jk} + ABC_{ijk} + \varepsilon_{(ijk)l}
$$

| | i,R | j,R | k,R | l,R | EMS | F-value |
| ---------------------- | --- | --- | --- | --- | ------------------------------------------------------------------------------------ | ------------------ |
| $A_i$ | 1 | b | c | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+cn\sigma^2_{AB}+bn\sigma^2_{AC}+bcn\sigma^2_A$ | |
| $B_j$ | a | 1 | c | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+an\sigma^2_{BC}+cn\sigma^2_{AB}+acn\sigma^2_B$ | |
| $C_k$ | a | b | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+an\sigma^2_{BC}+bn\sigma^2_{AC}+abn\sigma^2_C$ | |
| $AB_{ij}$ | 1 | 1 | c | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+cn\sigma^2_{AB}$ | $MS_{AB}/MS_{ABC}$ |
| $AC_{ik}$ | 1 | b | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+bn\sigma^2_{AC}$ | $MS_{AC}/MS_{ABC}$ |
| $BC_{jk}$ | a | 1 | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}+an\sigma^2_{BC}$ | $MS_{BC}/MS_{ABC}$ |
| $ABC_{ijk}$ | 1 | 1 | 1 | n | $\sigma_\varepsilon^2+n\sigma^2_{ABC}$ | $MS_{ABC}/MS_E$ |
| $\varepsilon_{(ijk)l}$ | 1 | 1 | 1 | 1 | $\sigma_\varepsilon^2$ | |

$\implies$ $H_0:\sigma^2_A=0/\sigma^2_B=0/\sigma^2_C=0$ 並沒有檢定方法。因為沒有可以作為基礎的 EMS。

**Remark**: 如果 EMS rule 無法給出 effect 的檢定方法。可以用以下兩種方式:
1. 假設一些 effect/intraction 為 0 。
2. 用漸進方法得到 F-test。

**Remakr**: $\varepsilon_{(ij)k}$ 與 $\varepsilon_{ijk}$ 兩種符號的意義是不同的。前者表示 $k$ 在 $ij$ 效應下得到,意味著獲得數據的 trt 是隨機出現的,後者則代表數據是輪流獲得的。

**Remark**: 計算 SS

$$
\begin{align*}
(n-1)S^2&=\sum^n(X_i-\bar{X})^2\\
&=\sum^nX_i^2-n\bar{X}^2\\
&=\sum^nX_i^2-n\left(\frac{1}{n}\sum^nX_i\right)^2\\
&=\sum^nX_i^2-\frac{1}{n}\left(\sum^nX_i\right)^2
\end{align*}
$$

$$
\begin{align*}
\implies SS_E&=\sum_i^k\sum_j^n(Y_{ij}-\bar{Y}_{i\cdot})^2\\
&=\sum_i^k\sum_j^nY_{ij}^2-\frac{1}{n}\sum_i^kY_{i\cdot}^2\\
SS_{trt}&=\sum_i^k\sum_j^n(Y_{i\cdot}-\bar{Y}_{\cdot\cdot})^2\\
&=\sum_i^k\frac{Y_{i\cdot}^2}{n}-\frac{Y_{\cdot\cdot}^2}{N}
\end{align*}
$$

0 comments on commit 1dabf1d

Please sign in to comment.