Skip to content

IGLICT/TM-NET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TM-NET: Deep Generative Networks for Textured Meshes

This is a Python3 / Pytorch implementation of TM-NET.

Setup

To run this code you need the following:

  • A machine with multiple GPUs(memory >= 12GB)

  • Python packages in the requirements.txt

pip install -r requirements.txt

Prepare Data

Data Link

  1. Run GetTransformedCube.m to get transformed a mini bounding box which will be used as source shape in non-rigid registration for each partial 3D model.
  2. Run SupportAnalysis.m to extract structure information from the partial obj files producing a corresponding code.mat for each 3D model.
  3. Run register.m to perform non-rigid registrations from transformed mini bounding boxes to original partial 3D models.
  4. Run GenerateData.m to extract deformation information between source shapes and registered shapes which will be used as the input of TM-NET.
  5. Run TransferColorPerPixelScript.m to generate texture images for registered parts.
  6. Run PrepareForTraining.m to split geometry, structure, image data to training or test dir. It will also divide texture image to six patches.

An example is shown in Pipeline.m. After you successfully run the code, the dir structure will be like follows:

├─box50
│  ├─37b6df64a97a5c29369151623ac3890b
│  └─d374912c3a9fca96c141a04b2a487fd9
├─Chair
│  ├─37b6df64a97a5c29369151623ac3890b
│  |   └─models
│  └─d374912c3a9fca96c141a04b2a487fd9
│      └─models
├─final50
│  ├─test
│  │  └─37b6df64a97a5c29369151623ac3890b
│  └─train
│      └─d374912c3a9fca96c141a04b2a487fd9
└─vaenew50
    ├─37b6df64a97a5c29369151623ac3890b
    │  ├─back
    │  ├─leg_ver_1
    │  ├─leg_ver_2
    │  ├─leg_ver_3
    │  ├─leg_ver_4
    │  └─seat
    └─d374912c3a9fca96c141a04b2a487fd9
        ├─back
        ├─leg_ver_1
        ├─leg_ver_2
        ├─leg_ver_3
        ├─leg_ver_4
        └─seat

Folder final50 is all we need for training and test.

Training and Test

  • Train PartVAE for each part
python ./python/train.py --yaml ./python/yaml/table/surface/geovae.yml
python ./python/train.py --yaml ./python/yaml/table/leg/geovae.yml
  • Train VQVAE
python ./python/train.py --yaml ./python/yaml/table/vqvae.yml
  • Extract discrete code for the seed part
python ./python/extract_latents_central_part.py \
--image_dir ../data/table/ \
--mat_dir ../data/table \
--vqvae_ckpt ./table_vqvae/latest.pth \
--vqvae_yaml ./python/yaml/table/vqvae.yml \
--geovae_ckpt ./table_geovae/surface/latest.pth \
--geovae_yaml ./python/yaml/table/surface/geovae.yml \
--category table \
--save_path ./table_latents \
--device 0 \
--mode 'train' or 'test' or 'val'
  • Train conditional PixelSNAIL for the seed part
python ./python/train.py --yaml ./python/yaml/table/surface/pixelsnail_top.yml
python ./python/train.py --yaml ./python/yaml/table/surface/pixelsnail_bottom.yml
  • Extract discrete code for other parts
python ./python/extract_latents_other_parts.py \
--image_dir ../data/table/ \
--mat_dir ../data/table \
--vqvae_ckpt ./table_vqvae/latest.pth \
--vqvae_yaml ./python/yaml/table/vqvae.yml \
--geovae_ckpt_dir ./table_geovae \
--geovae_yaml ./python/yaml/table/geovae.yml \
--category table \
--save_path ./table_latents \
--device 0 \
--mode 'train' or 'test' or 'val'
  • Train conditional PixelSNAIL for other parts
python ./python/train.py --yaml ./python/yaml/table/leg/pixelsnail_top.yml
python ./python/train.py --yaml ./python/yaml/table/leg/pixelsnail_bottom.yml
  • Sample texture for the seed part
python ./python/conditional_sample_2levels_central_part.py \
--path ./table_latents \
--part_name surface \
--vqvae ./table_vqvae/latest.pth \
--vqvae_yaml ./python/yaml/table/vqvae.yml \
--top ./table_pixelsnail/top_16/latest.pth \
--top_yaml ./python/yaml/table/pixelsnail_top_center_16.yml \
--bottom ./table_pixelsnail/bottom/latest.pth \
--bottom_yaml ./python/yaml/table/pixelsnail_bottom_center.yml \
--device 0 \
--batch 1
  • Sample texture for other parts
python ./python/conditional_sample_2levels_other_parts.py \
--path ./table_latents \
--central_part_name surface \
--part_name leg \
--vqvae ./table_vqvae/latest.pth \
--vqvae_yaml ./python/yaml/table/vqvae.yml \
--top ./table_pixelsnail/leg/top_16/latest.pth \
--top_yaml ./python/yaml/table/leg/pixelsnail_top_center_16.yml \
--bottom ./table_pixelsnail/leg/bottom/latest.pth \
--bottom_yaml ./python/yaml/table/leg/pixelsnail_bottom_center.yml \
--central_part_sample_dir ./table_pixelsnail/top_16/auto_texture \
--device 0 \
--batch 1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published