EfficientNetV2-S implementation using PyTorch
- Configure
imagenet
path by changingdata_dir
intrain.py
python main.py --benchmark
for model informationpython -m torch.distributed.launch --nproc_per_node=$ main.py --train
for training model,$
is number of GPUspython main.py --test
for testing,python main.py --test --tf
for ported weights testing
- The model achieved 82.7 top-1 after 150 epochs
- The model ported from original TensorFlow showed 83.8 top-1
Number of parameters: 23941296
Time per operator type:
778.049 ms. 70.6258%. Conv
255.227 ms. 23.1677%. Sigmoid
56.91 ms. 5.16589%. Mul
6.1573 ms. 0.558916%. Add
4.69289 ms. 0.425987%. ReduceMean
0.613303 ms. 0.0556713%. FC
1101.65 ms in Total
FLOP per operator type:
17.277 GFLOP. 99.7074%. Conv
0.0419251 GFLOP. 0.241954%. Mul
0.00519322 GFLOP. 0.0299706%. Add
0.003585 GFLOP. 0.0206894%. FC
17.3277 GFLOP in Total
Feature Memory Read per operator type:
295.875 MB. 50.5134%. Mul
241.136 MB. 41.168%. Conv
41.5457 MB. 7.0929%. Add
7.17917 MB. 1.22567%. FC
585.737 MB in Total
Feature Memory Written per operator type:
167.7 MB. 49.2361%. Mul
152.127 MB. 44.6639%. Conv
20.7729 MB. 6.09882%. Add
0.004 MB. 0.00117438%. FC
340.605 MB in Total
Parameter Memory per operator type:
87.8034 MB. 92.4486%. Conv
7.172 MB. 7.55143%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
94.9754 MB in Total