Skip to content

Commit

Permalink
Merge pull request #165 from Helmholtz-AI-Energy/maintenance/comment_…
Browse files Browse the repository at this point in the history
…coverage_report_pr

Comment coverage report on PR and update publication list in README
  • Loading branch information
oskar-taubert authored Sep 23, 2024
2 parents 5bf6e70 + 7c5b720 commit 91860e7
Show file tree
Hide file tree
Showing 3 changed files with 21 additions and 7 deletions.
7 changes: 6 additions & 1 deletion .github/workflows/python-test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -45,10 +45,15 @@ jobs:
coverage run --rcfile=./pyproject.toml -m pytest
mpirun -n 8 coverage run --rcfile=./pyproject.toml -m mpi4py -m pytest --with-mpi
coverage combine
coverage report -m
coverage report -m --format markdown > cov_report.txt
coverage xml
- name: Upload coverage reports to Codecov
uses: codecov/[email protected]
with:
token: ${{ secrets.CODECOV_TOKEN }}

- name: Post coverage report to PR
uses: marocchino/sticky-pull-request-comment@v2
with:
path: cov_report.txt
20 changes: 15 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,17 +40,27 @@ next generation using the fitness values of all candidates it evaluated and rece
It was already successfully applied in several accepted scientific publications. Applications include grid load
forecasting, remote sensing, and structural molecular biology:

>
> J. Debus, C. Debus, G. Dissertori, et al. **PETNet–Coincident Particle Event Detection using Spiking Neural Networks**.
> 2024 Neuro Inspired Computational Elements Conference (NICE), La Jolla, CA, USA, pp. 1-9 ( 2024).
> https://doi.org/10.1109/NICE61972.2024.10549584
> D. Coquelin, K. Flügel, M. Weiel, et al. **AB-Training: A Communication-Efficient Approach for Distributed Low-Rank
> Learning**. arXiv preprint (2024). https://doi.org/10.48550/arXiv.2405.01067
> D. Coquelin, K. Flügel, M. Weiel, et al. **Harnessing Orthogonality to Train Low-Rank Neural Networks**. arXiv
> preprint (2024). https://doi.org/10.48550/arXiv.2401.08505
> A. Weyrauch, T. Steens, O. Taubert, et al. **ReCycle: Fast and Efficient Long Time Series Forecasting with Residual
> Cyclic Transformers**. arXiv preprint (2024). https://doi.org/10.48550/arXiv.2405.03429
> Cyclic Transformers**. 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, pp. 1187-1194 (2024).
> https://doi.org/10.1109/CAI59869.2024.00212
> O. Taubert, F. von der Lehr, A. Bazarova, et al. **RNA contact prediction by data efficient deep learning**. Commun
> Biol 6, 913 (2023). https://doi.org/10.1038/s42003-023-05244-9
> O. Taubert, F. von der Lehr, A. Bazarova, et al. **RNA contact prediction by data efficient deep learning**.
> Communications Biology 6(1), 913 (2023). https://doi.org/10.1038/s42003-023-05244-9
> D. Coquelin, K. Flügel, M. Weiel, et al. **Harnessing Orthogonality to Train Low-Rank Neural Networks**. arXiv
> preprint (2023). https://doi.org/10.48550/arXiv.2401.08505
> Y. Funk, M. Götz, & H. Anzt. **Prediction of optimal solvers for sparse linear systems using deep learning**.
> Y. Funk, M. Götz, and H. Anzt. **Prediction of optimal solvers for sparse linear systems using deep learning**.
> Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing (pp. 14-24). Society for
> Industrial and Applied Mathematics (2022). https://doi.org/10.1137/1.9781611977141.2
Expand Down
1 change: 0 additions & 1 deletion coverage.svg

This file was deleted.

0 comments on commit 91860e7

Please sign in to comment.