This repository contains starter data for the CSCL Mini Project for the following database engines:
- MongoDB (NoSQL)
- MySQL
- PostgreSQL
By default Mongo will not have access control enabled. You will create users and grant permissions. Please refer to the Mongo documentation.
You can find the CSCL Mongo database data in the /mongo
directory. The easiest way to import this data is to use Mongo Compass.
- Create a new database named
cscl
with a collection namedbooks
. - Click your way to the
books
collection under the new database. - Select
Add Data
thenimport file
- For the 'File Path' select the
/mongo/cscl_db.json
file from this repository. For 'File Type' selectJSON
. Leave the options as-is.
####For Data Science Fellows: There is a Mongo database that contains 2020 checkout historical data to use for your data science needs. Fellow the instructions below to add it into Mongo compass:
- In the database named
cscl
, create a new collection called2020_historical_data
- Click your way to the
2020_historical_data
collection under the database. - Select
Add Data
thenimport file
- For the 'File Path' select the
/mongo/cscl_2020_top_hundred_books.json
file from this repository. For 'File Type' selectJSON
. Leave the options as-is.
You can find the CSCL SQL dump in /mysql/cscl_db.sql
. There are many ways to import a MySQL database:
Using DBeaver
Using the Command Line
####For Data Science Fellows:
Once you import the data using the methods above, you will find a table named 2020_CHECKOUT_DATA_TOP_HUNDRED_PER_WEEK
. This is where your historical data is found.
Install PostgreSQL on Mac
Install PostgreSQL on Linux
Install PostgreSQL on Windows
You can find the CSCL SQL dump in /postgres/cscl_db.sql
. There are many ways to import a PostgreSQL database:
Using DBeaver
Using the Command Line
####For Data Science Fellows:
Once you import the data using the methods above, you will find a table named 2020_CHECKOUT_DATA_TOP_HUNDRED_PER_WEEK
. This is where your historical data is found.
## Tools