-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from HPMolSim/dev
added thin system energy solver by fat
- Loading branch information
Showing
28 changed files
with
761 additions
and
575 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
function USeries_direct(z::T, k_xi::T, k_yj::T, uspara::USeriesPara{T}, M_mid::Int) where{T} | ||
t = zero(T) | ||
k2 = k_xi^2 + k_yj^2 | ||
|
||
for l in M_mid + 1:length(uspara.sw) | ||
sl, wl = uspara.sw[l] | ||
t += π * wl * sl^2 * exp(-sl^2 * k2 / 4) * exp(-z^2 / sl^2) | ||
end | ||
|
||
return t | ||
end | ||
|
||
function ChebUSeries_k(k_xi::T, k_yj::T, L_z::T, uspara::USeriesPara{T}, M::Int, Q::Int) where{T} | ||
|
||
f = z -> USeries_direct(z, k_xi, k_yj, uspara, M) | ||
x = chebpoints(Q, zero(T), L_z) | ||
|
||
return chebinterp(f.(x), zero(T), L_z) | ||
end | ||
|
||
function ChebUSeries(k_x::Vector{T}, k_y::Vector{T}, L_z::T, uspara::USeriesPara{T}, M::Int, Q::Int) where{T} | ||
|
||
cheb_mat = Array{ChebPoly{1, T, T}, 2}(undef, (length(k_x), length(k_y))) | ||
|
||
for i in 1:length(k_x) | ||
for j in 1:length(k_y) | ||
cheb_mat[i, j] = ChebUSeries_k(k_x[i], k_y[j], L_z, uspara, M, Q) | ||
end | ||
end | ||
|
||
return cheb_mat | ||
end | ||
|
||
@inline function chebpoly(n::Int, x::T, scale::T) where{T} | ||
return cos(n * acos(x / scale)) | ||
end | ||
|
||
@inbounds function real2Cheb!(H_r::Array{Complex{T}, 3}, H_c::Array{Complex{T}, 3}, r_z::Vector{T}, L_z::T) where{T} | ||
|
||
set_zeros!(H_c) | ||
N_z = size(H_r, 3) | ||
|
||
for k in 1:N_z, l in 1:N_z | ||
cheb_temp = k == 1 ? 0.5 : chebpoly(k - 1, r_z[l] - L_z / T(2), L_z / T(2)) | ||
for j in 1:size(H_r, 2), i in 1:size(H_r, 1) | ||
H_c[i, j, k] += 2 / N_z * H_r[i, j, l] * cheb_temp | ||
end | ||
end | ||
|
||
return H_c | ||
end | ||
|
||
@inbounds function Cheb2real!(H_c::Array{Complex{T}, 3}, H_r::Array{Complex{T}, 3}, r_z::Vector{T}, L_z::T) where{T} | ||
|
||
set_zeros!(H_r) | ||
N_z = size(H_c, 3) | ||
|
||
for k in 1:N_z, l in 1:N_z | ||
cheb_temp = chebpoly(k - 1, r_z[l] - L_z / T(2), L_z / T(2)) | ||
for j in 1:size(H_c, 2), i in 1:size(H_c, 1) | ||
H_r[i, j, l] += H_c[i, j, k] * cheb_temp | ||
end | ||
end | ||
|
||
return H_r | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
function Greens_Q2d_direct(z::T, k_xi::T, k_yj::T, uspara::USeriesPara{T}, M_mid::Int) where{T} | ||
t = zero(T) | ||
k2 = k_xi^2 + k_yj^2 | ||
|
||
for l in M_mid + 1:length(uspara.sw) | ||
sl, wl = uspara.sw[l] | ||
t += π * wl * sl^2 * exp(-sl^2 * k2 / 4) * exp(-z^2 / sl^2) | ||
end | ||
|
||
return t | ||
end | ||
|
||
|
||
#(x^n / n!) | ||
@inbounds @inline function special_powern(x::T, n::Int) where{T} | ||
t = one(T) | ||
for i in 1:n | ||
t *= x / T(i) | ||
end | ||
return t | ||
end | ||
|
||
# the resulting Polynomial is in the form of f = x -> poly((x / L_z)^2) | ||
function TaylorUSeries_k(k_xi::T, k_yj::T, L_z::T, uspara::USeriesPara{T}, M_mid::Int, Q::Int) where{T} | ||
coefs = zeros(T, Q) | ||
k2 = k_xi^2 + k_yj^2 | ||
if !(k2 ≈ zero(T)) | ||
for l in M_mid + 1:length(uspara.sw) | ||
sl, wl = uspara.sw[l] | ||
for n in 0:Q - 1 | ||
coefs[n + 1] += (-1)^n * π * wl * sl^2 * exp(-sl^2 * k2 / 4) * special_powern(L_z^2 / sl^2, n) | ||
end | ||
end | ||
end | ||
return coefs | ||
end | ||
|
||
function TaylorUSeries(k_x::Vector{T}, k_y::Vector{T}, L_z::T, uspara::USeriesPara{T}, M_mid::Int, Q::Int) where{T} | ||
|
||
taylor_mats = [zeros(T, (length(k_x), length(k_y))) for i in 1:Q] | ||
|
||
for i in 1:length(k_x) | ||
for j in 1:length(k_y) | ||
coefs = TaylorUSeries_k(k_x[i], k_y[j], L_z, uspara, M_mid, Q) | ||
for k in 1:Q | ||
taylor_mats[k][i, j] = coefs[k] | ||
end | ||
end | ||
end | ||
|
||
return taylor_mats | ||
end |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
@inbounds function gather_nu_single(q::T, pos::NTuple{3, T}, L::NTuple{3, T}, k_x::Vector{T}, k_y::Vector{T}, phase_x::Vector{Complex{T}}, phase_y::Vector{Complex{T}}, H_c::Array{Complex{T}, 3}) where{T} | ||
x, y, z = pos | ||
L_x, L_y, L_z = L | ||
ϕ = zero(Complex{T}) | ||
|
||
revise_phase_pos!(phase_x, phase_y, k_x, k_y, x - T(L[1] / 2), y - T(L[2] / 2)) | ||
|
||
for k in 1:size(H_c, 3) | ||
cheb_val = chebpoly(k - 1, z - L_z / T(2), L_z / T(2)) | ||
ϕ += dot(phase_x', (@view H_c[:, :, k]), phase_y)* cheb_val | ||
end | ||
|
||
return q * ϕ / (2 * L_x * L_y) | ||
end | ||
|
||
function gather_nu(qs::Vector{T}, poses::Vector{NTuple{3, T}}, L::NTuple{3, T}, k_x::Vector{T}, k_y::Vector{T}, phase_x::Vector{Complex{T}}, phase_y::Vector{Complex{T}}, H_c::Array{Complex{T}, 3}) where{T} | ||
E = zero(Complex{T}) | ||
for i in 1:length(qs) | ||
E += gather_nu_single(qs[i], poses[i], L, k_x, k_y, phase_x, phase_y, H_c) | ||
end | ||
return real(E) | ||
end | ||
|
||
@inbounds function gather_thin_single(q::T, pos::NTuple{3, T}, L_z::T, pad_grid::Array{Complex{T}, 3}, gridinfo::GridInfo{2, T}, cheb_value::Vector{Array{T, 1}}, cheb_coefs::NTuple{2, ChebCoef{T}}) where{T} | ||
|
||
potential_i = zero(T) | ||
idl = gridinfo.index_list | ||
x, y, z = pos | ||
|
||
near_id_image = image_grid_id((pos[1], pos[2]), gridinfo) | ||
near_pos_image = image_grid_pos(near_id_image, gridinfo) | ||
for i in 1:2 | ||
dx = pos[i] - near_pos_image[i] | ||
pwcheb_eval!(dx, cheb_value[i], cheb_coefs[i]) | ||
end | ||
|
||
for i in gridinfo.iter_list | ||
image_id = near_id_image.id .+ i | ||
for k in 1:size(pad_grid, 3) | ||
cheb_val = chebpoly(k - 1, z - L_z / T(2), L_z / T(2)) | ||
potential_i += real(pad_grid[idl[1][image_id[1]], idl[2][image_id[2]], k]) * prod(cheb_value[j][i[j] + gridinfo.w[j] + 1] for j in 1:2) * cheb_val | ||
end | ||
end | ||
|
||
return q * prod(gridinfo.h) * potential_i | ||
end | ||
|
||
function gather_thin(qs::Vector{T}, poses::Vector{NTuple{3, T}}, L::NTuple{3, T}, H_c::Array{Complex{T}, 3}, gridinfo::GridInfo{2, T}, cheb_value::Vector{Array{T, 1}}, cheb_coefs::NTuple{2, ChebCoef{T}}) where{T} | ||
E = zero(Complex{T}) | ||
for i in 1:length(qs) | ||
E += gather_thin_single(qs[i], poses[i], L[3], H_c, gridinfo, cheb_value, cheb_coefs) | ||
end | ||
return real(E) / 2 | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
function interpolate_nu_loop!( | ||
H_r::Array{Complex{T}, 3}, | ||
qs::Vector{T}, poses::Vector{NTuple{3, T}}, L::NTuple{3, T}, | ||
k_x::Vector{T}, k_y::Vector{T}, | ||
phase_x::Vector{Complex{T}}, phase_y::Vector{Complex{T}}, | ||
r_z::Vector{T}, uspara::USeriesPara{T}, M_mid::Int) where{T} | ||
|
||
set_zeros!(H_r) | ||
|
||
for n in 1:length(qs) | ||
x, y, z = poses[n] | ||
q = qs[n] | ||
revise_phase_neg!(phase_x, phase_y, k_x, k_y, x - L[1] / 2, y - L[2] / 2) | ||
|
||
for k in 1:size(H_r, 3) | ||
r_zk = r_z[k] | ||
for l in M_mid + 1:length(uspara.sw) | ||
sl, wl = uspara.sw[l] | ||
|
||
for j in 1:size(H_r, 2) | ||
k_yj = k_y[j] | ||
for i in 1:size(H_r, 1) | ||
k_xi = k_x[i] | ||
k2 = k_xi^2 + k_yj^2 | ||
phase = phase_x[i] * phase_y[j] | ||
if !(k2 ≈ zero(T)) | ||
H_r[i, j, k] += q * π * wl * sl^2 * phase * exp(-sl^2 * k2 / 4) * exp(-(z - r_zk)^2 / sl^2) | ||
end | ||
end | ||
end | ||
end | ||
end | ||
end | ||
|
||
return H_r | ||
end | ||
|
||
function interpolate_nu_cheb!( | ||
H_r::Array{Complex{T}, 3}, | ||
qs::Vector{T}, poses::Vector{NTuple{3, T}}, L::NTuple{3, T}, | ||
k_x::Vector{T}, k_y::Vector{T}, | ||
phase_x::Vector{Complex{T}}, phase_y::Vector{Complex{T}}, | ||
r_z::Vector{T}, cheb_mat::Array{ChebPoly{1, T, T}, 2}) where{T} | ||
|
||
set_zeros!(H_r) | ||
|
||
for n in 1:length(qs) | ||
x, y, z = poses[n] | ||
q = qs[n] | ||
revise_phase_neg!(phase_x, phase_y, k_x, k_y, x - L[1] / 2, y - L[2] / 2) | ||
|
||
for k in 1:size(H_r, 3) | ||
r_zk = r_z[k] | ||
for j in 1:size(H_r, 2) | ||
k_yj = k_y[j] | ||
for i in 1:size(H_r, 1) | ||
k_xi = k_x[i] | ||
k2 = k_xi^2 + k_yj^2 | ||
if !(k2 ≈ zero(T)) | ||
phase = phase_x[i] * phase_y[j] | ||
H_r[i, j, k] += q * phase * cheb_mat[i, j](abs(z - r_zk)) | ||
end | ||
end | ||
end | ||
end | ||
end | ||
|
||
return H_r | ||
end | ||
|
||
|
||
@inbounds function interpolate_thin_single!(q::T, pos::NTuple{3, T}, pad_grid::Array{Complex{T}, 3}, gridinfo::GridInfo{2, T}, cheb_value::Vector{Array{T, 1}}, cheb_coefs::NTuple{2, ChebCoef{T}}, r_z::Vector{T}, Taylor_order::Int, L_z::T) where{T} | ||
|
||
idl = gridinfo.index_list | ||
pos_new = (pos[1], pos[2]) | ||
|
||
near_id_image = image_grid_id(pos_new, gridinfo) | ||
near_pos_image = image_grid_pos(near_id_image, gridinfo) | ||
for i in 1:2 | ||
dx = pos[i] - near_pos_image[i] | ||
pwcheb_eval!(dx, cheb_value[i], cheb_coefs[i]) | ||
end | ||
|
||
for i in gridinfo.iter_list | ||
image_id = near_id_image.id .+ i | ||
for k in 1:size(pad_grid, 3) | ||
qn = q * ((pos[3] - r_z[k]) / L_z)^(2 * (Taylor_order - 1)) | ||
pad_grid[idl[1][image_id[1]], idl[2][image_id[2]], k] += Complex{T}(qn * prod(cheb_value[j][i[j] + gridinfo.w[j] + 1] for j in 1:2)) | ||
end | ||
end | ||
|
||
return nothing | ||
end | ||
|
||
@inbounds function interpolate_thin!(qs::Vector{T}, poses::Vector{NTuple{3, T}}, pad_grids::Vector{Array{Complex{T}, 3}}, gridinfo::GridInfo{2, T}, cheb_value::Vector{Array{T, 1}}, cheb_coefs::NTuple{2, ChebCoef{T}}, r_z::Vector{T}, L_z::T) where{T} | ||
|
||
@assert length(qs) == length(poses) | ||
set_zeros!.(pad_grids) | ||
|
||
for Taylor_order in 1:length(pad_grids) | ||
for i in 1:length(qs) | ||
interpolate_thin_single!(qs[i], poses[i], pad_grids[Taylor_order], gridinfo, cheb_value, cheb_coefs, r_z, Taylor_order, L_z) | ||
end | ||
end | ||
|
||
return nothing | ||
end | ||
|
||
function ϕkz_direct(z0::T, qs::Vector{T}, poses::Vector{NTuple{3, T}}, k_x::T, k_y::T, uspara::USeriesPara{T}, M_mid::Int) where{T} | ||
|
||
s = zero(T) | ||
|
||
for n in 1:length(qs) | ||
x, y, z = poses[n] | ||
q = qs[n] | ||
|
||
for l in M_mid + 1:length(uspara.sw) | ||
sl, wl = uspara.sw[l] | ||
k2 = k_x^2 + k_y^2 | ||
phase = exp( - T(1)im * (k_x * x + k_y * y)) | ||
s += q * π * wl * sl^2 * phase * exp(-sl^2 * k2 / 4) * exp(-(z - z0)^2 / sl^2) | ||
end | ||
end | ||
|
||
return s | ||
end |
Oops, something went wrong.