Skip to content

Commit

Permalink
Merge remote-tracking branch 'upstream/main' into cheatsheet_geoid
Browse files Browse the repository at this point in the history
  • Loading branch information
rhugonnet committed Dec 6, 2024
2 parents 33385e9 + 8498fc4 commit e268409
Show file tree
Hide file tree
Showing 6 changed files with 49 additions and 8 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -153,5 +153,6 @@ doc/source/gen_modules/
doc/source/sg_execution_times.rst
examples/basic/temp.tif

# Directory where myst_nb executes jupyter code
# Directory where myst_nb executes jupyter code and cache
doc/jupyter_execute/
doc/.jupyter_cache/
3 changes: 1 addition & 2 deletions doc/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,8 +66,7 @@
nb_execution_raise_on_error = True # To fail documentation build on notebook execution error
nb_execution_show_tb = True # To show full traceback on notebook execution error
nb_output_stderr = "warn" # To warn if an error is raised in a notebook cell (if intended, override to "show" in cell)

# autosummary_generate = True
nb_execution_mode = "cache"

intersphinx_mapping = {
"python": ("https://docs.python.org/", None),
Expand Down
41 changes: 41 additions & 0 deletions doc/source/coregistration.md
Original file line number Diff line number Diff line change
Expand Up @@ -493,3 +493,44 @@ These metadata are only inputs specific to a given method, outlined in the metho

For instance, for {class}`xdem.coreg.Deramp`, an input `poly_order` to define the polynomial order used for the fit, and
for {class}`xdem.coreg.DirectionalBias`, an input `angle` to define the angle at which to do the directional correction.

## Dividing coregistration in blocks

### The {class}`~xdem.coreg.BlockwiseCoreg` object

```{caution}
The {class}`~xdem.coreg.BlockwiseCoreg` feature is still experimental: it might not support all coregistration
methods, and create edge artefacts.
```

Sometimes, we want to split a coregistration across different spatial subsets of an elevation dataset, running that
method independently in each subset. A {class}`~xdem.coreg.BlockwiseCoreg` can be constructed for this:

```{code-cell} ipython3
blockwise = xdem.coreg.BlockwiseCoreg(xdem.coreg.NuthKaab(), subdivision=16)
```

The subdivision corresponds to an equal-length block division across the extent of the elevation dataset. It needs
to be a number of the form 2{sup}`n` (such as 4 or 256).

It is run the same way as other coregistrations:

```{code-cell} ipython3
# Run 16 block coregistrations
aligned_dem = blockwise.fit_and_apply(ref_dem, tba_dem_shifted)
```

```{code-cell} ipython3
:tags: [hide-input]
:mystnb:
: code_prompt_show: "Show plotting code"
: code_prompt_hide: "Hide plotting code"
# Plot before and after
f, ax = plt.subplots(1, 2)
ax[0].set_title("Before block NK")
(tba_dem_shifted - ref_dem).plot(cmap='RdYlBu', vmin=-30, vmax=30, ax=ax[0])
ax[1].set_title("After block NK")
(aligned_dem - ref_dem).plot(cmap='RdYlBu', vmin=-30, vmax=30, ax=ax[1], cbar_title="Elevation differences (m)")
_ = ax[1].set_yticklabels([])
```
2 changes: 1 addition & 1 deletion doc/source/uncertainty.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ tba_dem_coreg = tba_dem.coregister_3d(ref_dem, inlier_mask=inlier_mask)

```{code-cell} ipython3
# Estimate elevation uncertainty assuming both DEMs have similar precision
sig_dem, rho_sig = tba_dem_coreg.estimate_uncertainty(ref_dem, stable_terrain=inlier_mask, precision_of_other="same")
sig_dem, rho_sig = tba_dem_coreg.estimate_uncertainty(ref_dem, stable_terrain=inlier_mask, precision_of_other="same", random_state=42)
# The error map variability is estimated from slope and curvature by default
sig_dem.plot(cmap="Purples", cbar_title=r"Error in elevation (1$\sigma$, m)")
Expand Down
2 changes: 1 addition & 1 deletion tests/test_coreg/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1150,7 +1150,7 @@ def test_warp_dem() -> None:
)

# The warped DEM should have the value 'elev_shift' in the upper left corner.
assert warped_dem[0, 0] == elev_shift
assert warped_dem[0, 0] == -elev_shift
# The corner should be zero, so the corner pixel (represents the corner minus resolution / 2) should be close.
# We select the pixel before the corner (-2 in X-axis) to avoid the NaN propagation on the bottom row.
assert warped_dem[-2, -1] < 1
Expand Down
6 changes: 3 additions & 3 deletions xdem/coreg/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3393,8 +3393,8 @@ def _apply_rst(
warped_dem = warp_dem(
dem=elev,
transform=transform,
source_coords=all_points[:, :, 0],
destination_coords=all_points[:, :, 1],
source_coords=all_points[:, :, 1],
destination_coords=all_points[:, :, 0],
resampling="linear",
)

Expand Down Expand Up @@ -3538,7 +3538,7 @@ def warp_dem(
if not no_vertical:
grid_offsets = scipy.interpolate.griddata(
points=destination_coords_scaled[:, :2],
values=destination_coords_scaled[:, 2] - source_coords_scaled[:, 2],
values=source_coords_scaled[:, 2] - destination_coords_scaled[:, 2],
xi=(grid_x, grid_y),
method=resampling,
fill_value=np.nan,
Expand Down

0 comments on commit e268409

Please sign in to comment.