Skip to content

Faster implementation of the enhanced time-aware precision and recall (eTaPR) for the evaluation of anomaly detection methods on time series data

License

Notifications You must be signed in to change notification settings

GPla/faster-eTaPR

Repository files navigation

faster-eTaPR

Latest Version Supported Python Versions Documentation Status Pre-Commit enabled MyPy checked Code Coverage

Faster implementation (~200x) of the enhanced time-aware precision and recall (eTaPR) from Hwang et al. The original implementation is saurf4ng/eTaPR and this implementation is fully tested against it.

Motivation

The motivation behind the eTaPR is that it is enough for a detection method to partially detect an anomaly segment, as along as an human expert can find the anomaly around this prediction. The following illustration (a recreation from the paper) highlights the four cases which are considered by eTaPR:

Motivation behind eTaPR

  1. A successful detection: A human expert can likely find the anomaly A_1 based on the prediction P_1.
  2. A failed detection: Only a small portion of the prediction P_2 overlaps with the anomaly A_2.
  3. A failed detection: Most of the prediction P_3 lies in the range of non-anomalous behavior (prediction starts too early). A human expert will likely regard the prediction P_3 as incorrect or a false alarm. The prediction P_3 is too imprecise and the anomaly A_3 is likely to be missed.
  4. A failed prediction: The prediction P_4 mostly overlaps with the anomaly A_4, but covers only a small portion of the actual anomaly segment. Thus, a human expert is likely to dismiss the prediction P_4 as incorrect because the full extend of the anomaly remains hidden. The prediction P_4 contains insufficient information about the anomaly.

Note that for case 4, we could still mark the anomaly as detected, if there were more predictions which overlap with the anomaly A_4. Specifically, the handling of the cases 3 and 4 is what sets eTaPR apart from other scoring methods.

If you want an in-depth explanation of the calculation, check out the documentation.

Getting Started

Install this package from PyPI using pip or uv:

pip install faster-etapr
uv pip install faster-etapr

Now, you run your evaluation in python:

import faster_etapr
faster_etapr.evaluate_from_preds(
    y_hat=[0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0],
    y=    [0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1],
    theta_p=0.5,
    theta_r=0.1,
)
{
    'eta/recall': 0.3875,
    'eta/recall_detection': 0.5,
    'eta/recall_portion': 0.275,
    'eta/detected_anomalies': 2.0,
    'eta/precision': 0.46476766302377037,
    'eta/precision_detection': 0.46476766302377037,
    'eta/precision_portion': 0.46476766302377037,
    'eta/correct_predictions': 2.0,
    'eta/f1': 0.4226312395393011,
    'eta/TP': 4,
    'eta/FP': 5,
    'eta/FN': 7,
    'eta/wrong_predictions': 2,
    'eta/missed_anomalies': 2,
    'eta/anomalies': 4,
    'eta/segments': 0.499999999999875,
    'point/recall': 0.45454545454541323,
    'point/precision': 0.5555555555554939,
    'point/f1': 0.49999999999945494,
    'point/TP': 5,
    'point/FP': 4,
    'point/FN': 6,
    'point/anomalies': 4,
    'point/detected_anomalies': 3.0,
    'point/segments': 0.75,
    'point_adjust/recall': 0.9090909090909091,
    'point_adjust/precision': 0.7142857142857143,
    'point_adjust/f1': 0.7999999999995071
}

We calculate three types of metrics:

Benchmark

A little benchmark with randomly generated inputs (np.random.randint(0, 2, size=size)):

size eTaPR_pkg faster_etapr factor
1 000 0.4090 0.0032 ~125x
10 000 35.8264 0.1810 ~198x
20 000 148.2670 0.6547 ~226x
100 000 too long 55.04712  

Citation

If you use eTaPR, please cite the original author/paper:

@inproceedings{10.1145/3477314.3507024,
author = {Hwang, Won-Seok and Yun, Jeong-Han and Kim, Jonguk and Min, Byung Gil},
title = {"Do You Know Existing Accuracy Metrics Overrate Time-Series Anomaly Detections?"},
year = {2022},
isbn = {9781450387132},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477314.3507024},
doi = {10.1145/3477314.3507024},
booktitle = {Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing},
pages = {403–412},
numpages = {10},
keywords = {accuracy metric, anomaly detection, precision, recall, time-series},
location = {Virtual Event},
series = {SAC '22}
}

About

Faster implementation of the enhanced time-aware precision and recall (eTaPR) for the evaluation of anomaly detection methods on time series data

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages