Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update rh_*_cor to rh_*_wrt_ice_or_water #311

Merged
merged 6 commits into from
Nov 12, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 12 additions & 9 deletions src/pypromice/process/L1toL2.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,16 +102,16 @@ def toL2(

# calculating realtive humidity with regard to ice
T_100 = _getTempK(T_0)
ds['rh_u_cor'] = correctHumidity(ds['rh_u'], ds['t_u'],
ds['rh_u_wrt_ice_or_water'] = adjustHumidity(ds['rh_u'], ds['t_u'],
T_0, T_100, ews, ei0)

if ds.attrs['number_of_booms']==2:
ds['rh_l_cor'] = correctHumidity(ds['rh_l'], ds['t_l'],
ds['rh_l_wrt_ice_or_water'] = adjustHumidity(ds['rh_l'], ds['t_l'],
T_0, T_100, ews, ei0)

if hasattr(ds,'t_i'):
if ~ds['t_i'].isnull().all():
ds['rh_i_cor'] = correctHumidity(ds['rh_i'], ds['t_i'],
ds['rh_i_wrt_ice_or_water'] = adjustHumidity(ds['rh_i'], ds['t_i'],
T_0, T_100, ews, ei0)

# Determiune cloud cover for on-ice stations
Expand Down Expand Up @@ -419,9 +419,12 @@ def calcTilt(tilt_x, tilt_y, deg2rad):
return phi_sensor_rad, theta_sensor_rad


def correctHumidity(rh, T, T_0, T_100, ews, ei0): #TODO figure out if T replicate is needed
'''Correct relative humidity using Groff & Gratch method, where values are
set when freezing and remain the original values when not freezing
def adjustHumidity(rh, T, T_0, T_100, ews, ei0): #TODO figure out if T replicate is needed
'''Adjust relative humidity so that values are given with respect to
saturation over ice in subfreezing conditions, and with respect to
saturation over water (as given by the instrument) above the melting
point temperature. Saturation water vapors are calculated after
Groff & Gratch method.

Parameters
----------
Expand All @@ -440,7 +443,7 @@ def correctHumidity(rh, T, T_0, T_100, ews, ei0): #TODO f

Returns
-------
rh_cor : xarray.DataArray
rh_wrt_ice_or_water : xarray.DataArray
Corrected relative humidity
'''
# Convert to hPa (Groff & Gratch)
Expand All @@ -458,8 +461,8 @@ def correctHumidity(rh, T, T_0, T_100, ews, ei0): #TODO f
freezing = (T < 0) & (T > -100).values

# Set to Groff & Gratch values when freezing, otherwise just rh
rh_cor = rh.where(~freezing, other = rh*(e_s_wtr / e_s_ice))
return rh_cor
rh_wrt_ice_or_water = rh.where(~freezing, other = rh*(e_s_wtr / e_s_ice))
return rh_wrt_ice_or_water


def correctPrecip(precip, wspd):
Expand Down
442 changes: 221 additions & 221 deletions src/pypromice/process/L2toL3.py

Large diffs are not rendered by default.

11 changes: 6 additions & 5 deletions src/pypromice/process/resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,12 +51,13 @@ def resample_dataset(ds_h, t):
# taking the 10 min data and using it as instantaneous values:
is_10_minutes_timestamp = (ds_h.time.diff(dim='time') / np.timedelta64(1, 's') == 600)
if (t == '60min') and is_10_minutes_timestamp.any():
cols_to_update = ['p_i', 't_i', 'rh_i', 'rh_i_cor', 'wspd_i', 'wdir_i','wspd_x_i','wspd_y_i']
cols_to_update = ['p_i', 't_i', 'rh_i', 'rh_i_wrt_ice_or_water', 'wspd_i', 'wdir_i','wspd_x_i','wspd_y_i']
cols_origin = ['p_u', 't_u', 'rh_u', 'rh_u_wrt_ice_or_water', 'wspd_u', 'wdir_u','wspd_x_u','wspd_y_u']
timestamp_10min = ds_h.time.where(is_10_minutes_timestamp, drop=True).to_index()
timestamp_round_hour = df_d.index
timestamp_to_update = timestamp_round_hour.intersection(timestamp_10min)

for col in cols_to_update:
for col, col_org in zip(cols_to_update, cols_origin):
if col not in df_d.columns:
df_d[col] = np.nan
else:
Expand All @@ -67,7 +68,7 @@ def resample_dataset(ds_h, t):
timestamp_to_update = timestamp_to_update[missing_instantaneous]
df_d.loc[timestamp_to_update, col] = ds_h.reindex(
time= timestamp_to_update
)[col.replace('_i','_u')].values
)[col_org].values
if col == 'p_i':
df_d.loc[timestamp_to_update, col] = df_d.loc[timestamp_to_update, col].values-1000

Expand Down Expand Up @@ -95,8 +96,8 @@ def resample_dataset(ds_h, t):

df_d[var] = (p_vap.to_series().resample(t).mean() \
/ es_wtr.to_series().resample(t).mean())*100
if var+'_cor' in df_d.keys():
df_d[var+'_cor'] = (p_vap.to_series().resample(t).mean() \
if var+'_wrt_ice_or_water' in df_d.keys():
df_d[var+'_wrt_ice_or_water'] = (p_vap.to_series().resample(t).mean() \
/ es_cor.to_series().resample(t).mean())*100

# passing each variable attribute to the ressample dataset
Expand Down
2 changes: 0 additions & 2 deletions src/pypromice/process/value_clipping.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@ def clip_values(
):
"""
Clip values in dataset to defined "hi" and "lo" variables from dataframe.
There is a special treatment here for rh_u and rh_l variables, where values
are clipped and not assigned to NaN. This is for replication purposes

Parameters
----------
Expand Down
4 changes: 2 additions & 2 deletions src/pypromice/resources/variable_aliases_GC-Net.csv
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,10 @@ p_l,
t_u,TA2
t_l,TA1
rh_u,RH2
rh_u_cor,RH2_cor
rh_u_wrt_ice_or_water,RH2_cor
qh_u,Q2
rh_l,RH1
rh_l_cor,RH1_cor
rh_l_wrt_ice_or_water,RH1_cor
qh_l,Q1
wspd_u,VW2
wspd_l,VW1
Expand Down
6 changes: 3 additions & 3 deletions src/pypromice/resources/variables.csv
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,10 @@ p_l,air_pressure,Air pressure (lower boom),hPa,physicalMeasurement,time,FALSE,,6
t_u,air_temperature,Air temperature (upper boom),degrees_C,physicalMeasurement,time,FALSE,,-80,40,"",all,1,1,1,4
t_l,air_temperature,Air temperature (lower boom),degrees_C,physicalMeasurement,time,FALSE,,-80,40,"",two-boom,1,1,1,4
rh_u,relative_humidity,Relative humidity (upper boom),%,physicalMeasurement,time,FALSE,,0,100,"",all,1,1,1,4
rh_u_cor,relative_humidity_corrected,Relative humidity (upper boom) - corrected,%,modelResult,time,FALSE,L2 or later,0,150,"",all,0,1,1,4
rh_u_wrt_ice_or_water,relative_humidity_with_respect_to_ice_or_water,Relative humidity (upper boom) with respect to saturation over ice in subfreezing conditions and over water otherwise,%,modelResult,time,FALSE,L2 or later,0,150,"",all,0,1,1,4
qh_u,specific_humidity,Specific humidity (upper boom),kg/kg,modelResult,time,FALSE,L2 or later,0,100,"",all,0,1,1,4
rh_l,relative_humidity,Relative humidity (lower boom),%,physicalMeasurement,time,FALSE,,0,100,"",two-boom,1,1,1,4
rh_l_cor,relative_humidity_corrected,Relative humidity (lower boom) - corrected,%,modelResult,time,FALSE,L2 or later,0,150,"",two-boom,0,1,1,4
rh_l_wrt_ice_or_water,relative_humidity_with_respect_to_ice_or_water,Relative humidity (lower boom) with respect to saturation over ice in subfreezing conditions and over water otherwise,%,modelResult,time,FALSE,L2 or later,0,150,"",two-boom,0,1,1,4
qh_l,specific_humidity,Specific humidity (lower boom),kg/kg,modelResult,time,FALSE,L2 or later,0,100,,two-boom,0,1,1,4
wspd_u,wind_speed,Wind speed (upper boom),m s-1,physicalMeasurement,time,FALSE,,0,100,wdir_u wspd_x_u wspd_y_u,all,1,1,1,4
wspd_l,wind_speed,Wind speed (lower boom),m s-1,physicalMeasurement,time,FALSE,,0,100,wdir_l wspd_x_l wspd_y_l,two-boom,1,1,1,4
Expand Down Expand Up @@ -99,7 +99,7 @@ t_rad,temperature_of_radiation_sensor,Radiation sensor temperature,degrees_C,phy
p_i,air_pressure,Air pressure (instantaneous) minus 1000,hPa,physicalMeasurement,time,TRUE,,-350,100,,all,1,1,1,4
t_i,air_temperature,Air temperature (instantaneous),degrees_C,physicalMeasurement,time,TRUE,,-80,40,,all,1,1,1,4
rh_i,relative_humidity,Relative humidity (instantaneous),%,physicalMeasurement,time,TRUE,,0,150,"",all,1,1,1,4
rh_i_cor,relative_humidity_corrected,Relative humidity (instantaneous) – corrected,%,modelResult,time,TRUE,L2 or later,0,100,,all,0,1,1,4
rh_i_wrt_ice_or_water,relative_humidity_with_respect_to_ice_or_water,Relative humidity (instantaneous) with respect to saturation over ice in subfreezing conditions and over water otherwise,%,modelResult,time,TRUE,L2 or later,0,100,,all,0,1,1,4
wspd_i,wind_speed,Wind speed (instantaneous),m s-1,physicalMeasurement,time,TRUE,,0,100,wdir_i wspd_x_i wspd_y_i,all,1,1,1,4
wdir_i,wind_from_direction,Wind from direction (instantaneous),degrees,physicalMeasurement,time,TRUE,,1,360,wspd_x_i wspd_y_i,all,1,1,1,4
wspd_x_i,wind_speed_from_x_direction,Wind speed from x direction (instantaneous),m s-1,modelResult,time,TRUE,L2 or later,-100,100,"",all,0,1,1,4
Expand Down
2 changes: 1 addition & 1 deletion tests/unit/bufr_export/tx_l3_test1.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
time,p_u,p_l,t_u,t_l,rh_u,rh_u_cor,qh_u,rh_l,rh_l_cor,qh_l,wspd_u,wspd_l,wdir_u,wdir_l,wspd_x_u,wspd_y_u,wspd_x_l,wspd_y_l,dsr,dsr_cor,usr,usr_cor,albedo,dlr,ulr,cc,t_surf,dlhf_u,dlhf_l,dshf_u,dshf_l,z_boom_u,z_boom_l,precip_u,precip_u_cor,precip_u_rate,precip_l,precip_l_cor,precip_l_rate,t_i_1,t_i_2,t_i_3,t_i_4,t_i_5,t_i_6,t_i_7,t_i_8,t_i_9,t_i_10,t_i_11,tilt_x,tilt_y,rot,gps_lat,gps_lon,gps_alt,gps_time,gps_hdop,batt_v,fan_dc_u,fan_dc_l,t_rad,p_i,t_i,rh_i,rh_i_cor,wspd_i,wdir_i,wspd_x_i,wspd_y_i,msg_i,msg_lat,msg_lon
time,p_u,p_l,t_u,t_l,rh_u,rh_u_wrt_ice_or_water,qh_u,rh_l,rh_l_wrt_ice_or_water,qh_l,wspd_u,wspd_l,wdir_u,wdir_l,wspd_x_u,wspd_y_u,wspd_x_l,wspd_y_l,dsr,dsr_cor,usr,usr_cor,albedo,dlr,ulr,cc,t_surf,dlhf_u,dlhf_l,dshf_u,dshf_l,z_boom_u,z_boom_l,precip_u,precip_u_cor,precip_u_rate,precip_l,precip_l_cor,precip_l_rate,t_i_1,t_i_2,t_i_3,t_i_4,t_i_5,t_i_6,t_i_7,t_i_8,t_i_9,t_i_10,t_i_11,tilt_x,tilt_y,rot,gps_lat,gps_lon,gps_alt,gps_time,gps_hdop,batt_v,fan_dc_u,fan_dc_l,t_rad,p_i,t_i,rh_i,rh_i_cor,wspd_i,wdir_i,wspd_x_i,wspd_y_i,msg_i,msg_lat,msg_lon
2023-12-01 00:00:00,784.5,785.8,-16.32,-16.3,77.87,91.2846,1.0583,80.1,93.8804,1.0887,16.33,15.27,113.2,122.8,15.0095,-6.4331,12.8355,-8.2719,-1.9282,0.0,0.5033,0.0,,182.6197,241.7566,0.3205,-17.134,-1.6006,1.6393,30.3492,31.1479,4.1967,2.946,129.4,136.5924,0.0,304.0,315.0223,0.0,,-8.33,-7.41,-6.43,-5.9,-5.64,-5.51,-6.01,,,-12.46,0.6404,0.8809,218.9,66.482488,-46.29424,2135.0,21.0,0.9,12.72,35.15,11.81,-16.44,-213.9,-16.4,82.0,96.2012,15.48,122.3,13.0847,-8.2718,0.0,66.5026,-46.33518
2023-12-01 01:00:00,784.1,785.5,-15.82,-15.92,76.17,88.8564,1.0798,78.75,91.956,1.1052,15.85,14.83,112.3,126.2,14.6646,-6.0144,11.9672,-8.7587,-2.0466,0.0,0.7549,0.0,,178.4223,242.0001,0.2567,-17.034,-0.5022,2.1859,43.1898,40.0931,4.2047,2.9472,129.4,136.5924,0.0,304.0,315.0223,0.0,,-8.33,-7.41,-6.43,-5.9,-5.64,-5.51,-6.01,,,-12.46,0.631,0.5809,225.6,66.482471,-46.29426,2124.0,10022.0,0.73,12.74,30.55,11.82,-16.06,-214.4,-16.2,79.4,92.9691,15.28,118.8,13.39,-7.3612,0.0,66.5026,-46.33518
2023-12-01 02:00:00,784.1,785.5,-15.55,-15.6,76.88,89.4484,1.1146,79.15,92.1345,1.1408,15.55,14.57,117.1,129.6,13.8428,-7.0837,11.2264,-9.2873,-2.0272,0.0,0.6131,0.0,,182.2089,243.3796,0.2862,-16.6921,-0.5438,2.18,40.0149,38.6836,4.1981,2.9441,129.4,136.5924,0.0,304.0,315.0223,0.0,,-8.33,-7.41,-6.43,-5.9,-5.64,-5.51,-6.01,,,-12.46,0.3333,0.8761,231.1,66.482326,-46.294294,2121.0,20021.0,1.04,12.73,30.8,12.34,-15.74,-214.5,-15.6,79.0,91.9599,14.63,138.5,9.6941,-10.9572,0.0,66.50363,-46.20806
Expand Down
34 changes: 17 additions & 17 deletions tests/unit/test_value_clippping.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,32 +198,32 @@ def test_circular_dependencies(self):
check_dtype=True,
)

def test_rh_corrected(self):
def test_rh_adjusted(self):
variable_config = pd.DataFrame(
columns=["field", "lo", "hi", "OOL"],
data=[
["rh_u", 0, 150, "rh_u_cor"],
["rh_u_cor", 0, 150, ""],
["rh_u", 0, 150, "rh_u_wrt_ice_or_water"],
["rh_u_wrt_ice_or_water", 0, 150, ""],
],
).set_index("field")

rows_input = []
rows_expected = []
# All values are within the expected range
rows_input.append(dict(rh_u=42, rh_u_cor=43))
rows_expected.append(dict(rh_u=42, rh_u_cor=43))
# rh_u is below range, but rh_u_cor is within range. Both should be flagged due to the OOL relationship
rows_input.append(dict(rh_u=-10, rh_u_cor=3))
rows_expected.append(dict(rh_u=np.nan, rh_u_cor=np.nan))
# rh_u is within range, but rh_u_cor is below range; rh_u_cor should be flagged
rows_input.append(dict(rh_u=54, rh_u_cor=-4))
rows_expected.append(dict(rh_u=54, rh_u_cor=np.nan))
# rh_u is above range, but rh_u_cor is within range. Both should be flagged due to the OOL relationship
rows_input.append(dict(rh_u=160, rh_u_cor=120))
rows_expected.append(dict(rh_u=np.nan, rh_u_cor=np.nan))
# rh_u is within range, but rh_u_cor is above range; rh_u_cor should be flagged
rows_input.append(dict(rh_u=100, rh_u_cor=255))
rows_expected.append(dict(rh_u=100, rh_u_cor=np.nan))
rows_input.append(dict(rh_u=42, rh_u_wrt_ice_or_water=43))
rows_expected.append(dict(rh_u=42, rh_u_wrt_ice_or_water=43))
# rh_u is below range, but rh_u_wrt_ice_or_water is within range. Both should be flagged due to the OOL relationship
rows_input.append(dict(rh_u=-10, rh_u_wrt_ice_or_water=3))
rows_expected.append(dict(rh_u=np.nan, rh_u_wrt_ice_or_water=np.nan))
# rh_u is within range, but rh_u_wrt_ice_or_water is below range; rh_u_wrt_ice_or_water should be flagged
rows_input.append(dict(rh_u=54, rh_u_wrt_ice_or_water=-4))
rows_expected.append(dict(rh_u=54, rh_u_wrt_ice_or_water=np.nan))
# rh_u is above range, but rh_u_wrt_ice_or_water is within range. Both should be flagged due to the OOL relationship
rows_input.append(dict(rh_u=160, rh_u_wrt_ice_or_water=120))
rows_expected.append(dict(rh_u=np.nan, rh_u_wrt_ice_or_water=np.nan))
# rh_u is within range, but rh_u_wrt_ice_or_water is above range; rh_u_wrt_ice_or_water should be flagged
rows_input.append(dict(rh_u=100, rh_u_wrt_ice_or_water=255))
rows_expected.append(dict(rh_u=100, rh_u_wrt_ice_or_water=np.nan))

# Prepare the data
df_input = pd.DataFrame(rows_input, dtype=float)
Expand Down
Loading