Skip to content

Commit

Permalink
Merge pull request #3 from hmonroe/master
Browse files Browse the repository at this point in the history
Remove unused sub_pred, ofLeOfReflOfTrans, ext'
  • Loading branch information
iehality authored Dec 4, 2023
2 parents a02558c + 414ade7 commit d35ee34
Showing 1 changed file with 1 addition and 21 deletions.
22 changes: 1 addition & 21 deletions Logic/Vorspiel/Vorspiel.lean
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,6 @@ infixr:70 " :>ₙ " => cases
@[simp] lemma ne_step_max' (n m : ℕ) : n ≠ max m n + 1 :=
ne_of_lt $ Nat.lt_succ_of_le $ by simp

lemma sub_pred {m n : ℕ} (hm : n ≤ m) (hn : n ≠ 0) : m - n.pred = (m - n).succ := by
rw [←Nat.sub_one, tsub_tsub_assoc hm (Nat.one_le_iff_ne_zero.mpr hn)]

lemma rec_eq {α : Sort*} (a : α) (f₁ f₂ : ℕ → α → α) (n : ℕ) (H : ∀ m < n, ∀ a, f₁ m a = f₂ m a) :
(n.rec a f₁ : α) = n.rec a f₂ := by
induction' n with n ih <;> simp
Expand All @@ -54,20 +51,6 @@ lemma least_number (P : ℕ → Prop) (hP : ∃ x, P x) : ∃ x, P x ∧ ∀ z <

def toFin (n : ℕ) : ℕ → Option (Fin n) := fun x => if hx : x < n then some ⟨x, hx⟩ else none

section

variable {r : ℕ → ℕ → Sort u}
(refl : (n : ℕ) → r n n)
(trans : {l m n : ℕ} → r l m → r m n → r l n)
(succ : (n : ℕ) → r n (n + 1))

def ofLeOfReflOfTrans {m n : ℕ} (h : m ≤ n) : r m n :=
add_sub_of_le h ▸
Nat.rec (motive := fun k => r m (m + k)) (refl m)
(fun k ih => @trans m (m + k) (m + k.succ) ih (by simpa[Nat.add_succ] using succ (m + k))) (n - m)

end

end Nat

lemma eq_finZeroElim {α : Sort u} (x : Fin 0 → α) : x = finZeroElim := funext (by rintro ⟨_, _⟩; contradiction)
Expand All @@ -77,9 +60,6 @@ open Fin
section
variable {n : ℕ} {α : Type u}

lemma ext' {v w : Fin n → α} : (∀ i, v i = w i) ↔ v = w :=
by { intro h; ext i; exact h i }, by { rintro rfl; simp }⟩

infixr:70 " :> " => vecCons

@[simp] lemma vecCons_zero :
Expand Down Expand Up @@ -260,7 +240,7 @@ def toOptionVec : {n : ℕ} → (Fin n → Option α) → Option (Fin n → α)
{ have : ∀ i, v i.succ = some (z i) := ih.mp hs
have : v = some a :> (fun i => some (z i)) :=
by funext i; cases i using Fin.cases <;> simp[hz, this]
simp[this, ←comp_vecCons', Matrix.ext'] } }
simp[this, ←comp_vecCons', Iff.symm Function.funext_iff ] } }

def vecToNat : {n : ℕ} → (Fin n → ℕ) → ℕ
| 0, _ => 0
Expand Down

0 comments on commit d35ee34

Please sign in to comment.