Skip to content

ExenVitor/torch-android

 
 

Repository files navigation

##########################################

Torch-7 for Android

########################################## Torch7 provides a Matlab-like environment for state-of-the-art machine learning algorithms. It is easy to use and provides a very efficient implementation, thanks to an easy and fast scripting language (Lua) and a underlying C implementation.

Modified to be compiled and used with Android

Features

  • Loading of lua packages from the apk directly.
  • This is done by writing a custom package.loader Reference: http://www.lua.org/manual/5.1/manual.html#pdf-package.loaders The loader is in torchandroid.cpp as loader_android
  • torchandroid.h and torchandroid.cpp give lots of helper functions to make life easier
    • Print function overriden to redirect to logcat (only handles strings for now)
    • Function to get apk assets as bytes (very useful)
  • Full support for ffi and shared libraries

torch.load now takes three additional modes: apkbinary32, apkbinary64, apkascii. One can store model files in the assets folder and use these modes to load them. If the model was saved on a 64-bit machine, use apkbinary64, if it was saved on a 32-bit machine, use apkbinary32.

Requirements

For CUDA-enabled version: NVIDIA CodeWorks for Android: https://developer.nvidia.com/codeworks-android. For CPU-only version : Android NDK and Android SDK

Samples

  • Three sample projects has been provided in demos/
  • demos/android-demo/jni/torchdemo.cpp is a simple use-case
  • demos/android-demo/assets/main.lua is the file that is run
  • demos/android-demo-cifar showcases classifying Camera inputs (or images from gallery) into one of 10 CIFAR-10 categories.
  • Vinayak Ghokale from e-lab Purdue (https://github.com/e-lab) contributed a face detector demo, which showcases a fuller use-case (demos/facedetector_e-lab ).

Building Torch-Android Libraries and Java class.

If on ubuntu, install the following packages: sudo apt-get install libx32gcc-4.8-dev libc6-dev-i386 Default is to build with CUDA - so make sure you installed NVIDIA CodeWorks for Android and its nvcc is in your PATH. Otherwise, set WITH_CUDA=OFF in build.sh

  1. git submodule update --init --recursive
  2. Optionally, open build.sh and modify ARCH (to match your device architecture) and WITH_CUDA variables.
  3. run build script: 3 ./build.sh

You can use torch in your android apps. The relevant directories are

  • install/include - include directories
  • install/lib - static libs cross-compiled for armeabi-v7a
  • install/share/lua - lua files

Building Example

  1. Build Torch-Android atleast once using the steps above.
  2. [Optional] Connect your android phone in debugging mode, to automatically install the apk.
  3. Change directory into demos/android-demo folder.
  4. Run build script. $ ./build.sh
  5. Run the app TorchDemo on your phone.

About

Torch-7 for Android

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • CMake 37.8%
  • Lua 19.2%
  • C 15.2%
  • Java 12.7%
  • C++ 10.6%
  • Shell 3.7%
  • Makefile 0.8%