Skip to content

Commit

Permalink
updated docs
Browse files Browse the repository at this point in the history
  • Loading branch information
axsaucedo committed Apr 21, 2019
1 parent 0f1934f commit 8979f21
Show file tree
Hide file tree
Showing 3 changed files with 270 additions and 19 deletions.
116 changes: 113 additions & 3 deletions docs/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -633,7 +633,31 @@ <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this
<dl class="function">
<dt id="xai.convert_probs">
<code class="descclassname">xai.</code><code class="descname">convert_probs</code><span class="sig-paren">(</span><em>probs</em>, <em>threshold=0.5</em><span class="sig-paren">)</span><a class="headerlink" href="#xai.convert_probs" title="Permalink to this definition"></a></dt>
<dd><p>Convert probabilities into classes</p>
<dd><p>Converts all the probabilities in the array provided into binary labels
as per the threshold provided which is 0.5 by default.</p>
<p class="rubric">Example</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">probs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">])</span>
<span class="n">labels</span> <span class="o">=</span> <span class="n">xai</span><span class="o">.</span><span class="n">convert_probs</span><span class="p">(</span><span class="n">probs</span><span class="p">,</span> <span class="n">threshold</span><span class="o">=</span><span class="mf">0.65</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>

<span class="o">&gt;</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span>
</pre></div>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>probs</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>) – Numpy array or list containing a list of floats between 0 and 1</p></li>
<li><p><strong>threshold</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">float</span></code>) – Float that provides the threshold for which probabilities over the
threshold will be converted to 1</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Numpy array containing the labels based on threshold provided</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>np.ndarray</p>
</dd>
</dl>
</dd></dl>

<dl class="function">
Expand Down Expand Up @@ -691,7 +715,50 @@ <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this
<dl class="function">
<dt id="xai.evaluation_metrics">
<code class="descclassname">xai.</code><code class="descname">evaluation_metrics</code><span class="sig-paren">(</span><em>y_valid</em>, <em>y_pred</em><span class="sig-paren">)</span><a class="headerlink" href="#xai.evaluation_metrics" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Calculates model performance metrics (accuracy, precision, recall, etc)
from the actual and predicted lables provided.</p>
<p class="rubric">Example</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">y_actual</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span>
<span class="n">y_predicted</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span>

<span class="n">metrics</span> <span class="o">=</span> <span class="n">xai</span><span class="o">.</span><span class="n">evaluation_metrics</span><span class="p">(</span><span class="n">y_actual</span><span class="p">,</span> <span class="n">y_predicted</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span><span class="n">v</span> <span class="ow">in</span> <span class="n">metrics</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">print</span><span class="p">(</span><span class="n">f</span><span class="s2">&quot;{k}: {v}&quot;</span><span class="p">)</span>

<span class="o">&gt;</span> <span class="n">precision</span><span class="p">:</span> <span class="mf">0.8</span><span class="p">,</span>
<span class="o">&gt;</span> <span class="n">recall</span><span class="p">:</span> <span class="mf">0.9</span><span class="p">,</span>
<span class="o">&gt;</span> <span class="n">specificity</span><span class="p">:</span> <span class="mf">0.7</span><span class="p">,</span>
<span class="o">&gt;</span> <span class="n">accuracy</span><span class="p">:</span> <span class="mf">0.8</span><span class="p">,</span>
<span class="o">&gt;</span> <span class="n">auc</span><span class="p">:</span> <span class="mf">0.7</span><span class="p">,</span>
<span class="o">&gt;</span> <span class="n">f1</span><span class="p">:</span> <span class="mf">0.8</span>
</pre></div>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>y_valid</strong> – Numpy array with the actual labels for the datapoints</p></li>
<li><p><strong>y_pred</strong> – Numpy array with the predicted labels for the datapoints</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p><p>Dictionary containing the metrics as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="k">return</span> <span class="p">{</span>
<span class="s2">&quot;precision&quot;</span><span class="p">:</span> <span class="n">precision</span><span class="p">,</span>
<span class="s2">&quot;recall&quot;</span><span class="p">:</span> <span class="n">recall</span><span class="p">,</span>
<span class="s2">&quot;specificity&quot;</span><span class="p">:</span> <span class="n">specificity</span><span class="p">,</span>
<span class="s2">&quot;accuracy&quot;</span><span class="p">:</span> <span class="n">accuracy</span><span class="p">,</span>
<span class="s2">&quot;auc&quot;</span><span class="p">:</span> <span class="n">auc</span><span class="p">,</span>
<span class="s2">&quot;f1&quot;</span><span class="p">:</span> <span class="n">f1</span>
<span class="p">}</span>
</pre></div>
</div>
</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>Dict[str, float]</p>
</dd>
</dl>
</dd></dl>

<dl class="function">
<dt id="xai.feature_importance">
Expand Down Expand Up @@ -793,7 +860,50 @@ <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this
<dl class="function">
<dt id="xai.metrics_plot">
<code class="descclassname">xai.</code><code class="descname">metrics_plot</code><span class="sig-paren">(</span><em>target</em>, <em>predicted</em>, <em>df=Empty DataFrame Columns: [] Index: []</em>, <em>cross_cols=[]</em>, <em>categorical_cols=[]</em>, <em>bins=6</em>, <em>plot=True</em>, <em>exclude_metrics=[]</em>, <em>plot_threshold=0.5</em><span class="sig-paren">)</span><a class="headerlink" href="#xai.metrics_plot" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Creates a plot that displays statistical metrics including precision,
recall, accuracy, auc, f1 and specificity for each of the groups created
for the columns provided by cross_cols. For example, if the columns passed
are “gender” and “age”, the resulting plot will show the statistical metrics
for Male and Female for each binned group.</p>
<p class="rubric">Example</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">target</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span>
<span class="n">predicted</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span>

<span class="n">df_metrics</span> <span class="o">=</span> <span class="n">xai</span><span class="o">.</span><span class="n">metrics_plot</span><span class="p">(</span>
<span class="n">target</span><span class="p">,</span>
<span class="n">predicted</span><span class="p">,</span>
<span class="n">df</span><span class="o">=</span><span class="n">df_data</span><span class="p">,</span>
<span class="n">cross_cols</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;gender&quot;</span><span class="p">,</span> <span class="s2">&quot;age&quot;</span><span class="p">],</span>
<span class="n">bins</span><span class="o">=</span><span class="mi">3</span>
</pre></div>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>target</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>) – Numpy array containing the target labels for the datapoints</p></li>
<li><p><strong>predicted</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">ndarray</span></code>) – Numpy array containing the predicted labels for the datapoints</p></li>
<li><p><strong>df</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DataFrame</span></code>) – Pandas dataframe containing all the features for the datapoints.
It can be empty if only looking to calculate global metrics, but
if you would like to compute for categories across columns, the
columns you are grouping by need to be provided</p></li>
<li><p><strong>cross_cols</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">List</span></code>[<code class="xref py py-class docutils literal notranslate"><span class="pre">str</span></code>]) – Contains the columns that you would like to use to cross the values</p></li>
<li><p><strong>bins</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">int</span></code>) – [Default: 6] The number of bins in which you’d like
numerical columns to be split</p></li>
<li><p><strong>plot</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">bool</span></code>) – [Default: True] If True a plot will be drawn with the results</p></li>
<li><p><strong>exclude_metrics</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">List</span></code>[<code class="xref py py-class docutils literal notranslate"><span class="pre">str</span></code>]) – These are the metrics that you can choose to exclude if you only
want specific ones (for example, excluding “f1”, “specificity”, etc)</p></li>
<li><p><strong>plot_threshold</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">float</span></code>) – The percentage that will be used to draw the threshold line in the plot
which would provide guidance on what is the ideal metrics to achieve.</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Pandas Dataframe containing all the metrics for the groups provided</p>
</dd>
<dt class="field-odd">Return type</dt>
<dd class="field-odd"><p>pd.DataFrame</p>
</dd>
</dl>
</dd></dl>

<dl class="function">
<dt id="xai.normalize_numeric">
Expand Down
Loading

0 comments on commit 8979f21

Please sign in to comment.