-
Notifications
You must be signed in to change notification settings - Fork 8
/
mapVirtualDetector.m
58 lines (47 loc) · 1.7 KB
/
mapVirtualDetector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
function [ im ] = mapVirtualDetector( data4d, detectormask, doPlot )
%mapVirtualDetector makes an image from a 4D cbed with an arbitrary mask
% input:
% cbed4d -- 4D STEM dataset with dimensions ordered [k1,k2,x1,x2].
% detectormask -- diffraction space detector mask (matches [k1,k2]),
% can be binary or positive/negative real values.
% doPlot -- True or false value indicating if function should plot
% mask and resulting image (optional, default false)
% output:
% im -- resultant 2D image.
%
%This function is part of the PC-STEM Package by Elliot Padgett in the
%Muller Group at Cornell University. Last updated June 25, 2019.
if nargin<3
doPlot = false;
end
[N_k1,N_k2,N_x1,N_x2]=size(data4d);
%arrange in 1D
cbed_lin=reshape(data4d,N_k1,N_k2,N_x1*N_x2);
im_lin=zeros(N_x1*N_x2,1);
%if a stack of masks was given, iterate through all
numMasks = size(detectormask,3);
im = zeros(N_x1,N_x2,numMasks);
for i=1:numMasks
%calculate for all diffraction patterns
for j=1:(N_x1*N_x2)
im_lin(j)=sum(sum(detectormask(:,:,i).*cbed_lin(:,:,j)));
end
%reshape to 2D image
im(:,:,i) = reshape(im_lin,N_x1,N_x2);
end
if doPlot
%plot mask and image
meanCBED = mean(mean(data4d,4),3);
figure,
for i = 1:numMasks
subplot(numMasks,3,3*(i-1) + 1),
plotIM(detectormask(:,:,i)), title('detector mask')
subplot(numMasks,3,3*(i-1) + 2),
plotIM(log(meanCBED)), title('mean pattern')
hold on; visboundaries(detectormask(:,:,i)>0,'EnhanceVisibility',false)
subplot(numMasks,3,3*(i-1) + 3),
plotIM(im(:,:,i)), title('image')
end
drawnow
end
end