https://www.kaggle.com/c/bengaliai-cv19/leaderboard
https://www.kaggle.com/c/bengaliai-cv19/discussion/135960
EXP | grapheme_root | vowel_diacritic | consonant_diacritic | CV | LB |
---|---|---|---|---|---|
EXP_200 | 0.976273 | 0.990575 | 0.985638 | 0.982190 | 0.9745 |
EXP_200_20 | 0.969665 | 0.992616 | 0.990397 | 0.980586 | 0.9701 |
EXP_200_CUTMIX | 0.977921 | 0.990718 | 0.985638 | 0.983230 | 0.950 |
Images: Preprocessing seems to make model stuck around local and lb 0.969
If we dont preprocess images atleads to higher local score abd lb sc
MODEL: se_resnext50_32x4d
BS: 1024
SZ: 128 (1 CH)
VALID: 5 FOLD CV (FOLD=2)
TFMS: transform(get_transforms(do_flip=False,max_warp=0.2, max_zoom=1.1, max_rotate=5,
xtra_tfms=[cutout(n_holes=(10,25), length=(10, 30), p=.5)]), size=(SZ, SZ),
resize_method=ResizeMethod.SQUISH, padding_mode='reflection')
MixUP: True
PRETRAINED: IMAGENET
NORMALIZE: ([0.0692], [0.2051])
LOSS: WEIGHTED [0.7, 0.1, 0.2]
TRAINING: OPT: Over9000
fit_one_cycle(100, lr, wd=1e-2, pct_start=0.0, div_factor=100)
NOTEBOOK: EXP_200
MODEL WEIGHTS: [EXP_200_RESNEX_1CH_MISH_SIMPLE_ORIG_2_2.pth]
MODEL TRN_LOSS: 0.597414
MODEL VAL_LOSS: 0.071885
ACCURACY ALL : 0.982190
LB SCORE: 0.9745 (SUB_NAME: EXP_80_SERESNET101_1CH(version 23/23))
grapheme_root | vowel_diacritic | consonant_diacritic | CV | LB |
---|---|---|---|---|
0.976273 | 0.990575 | 0.985638 | 0.982190 | 0.9745 |
Mish
only for tails (body was with nn.ReLU()
)
n
- on the last linear layers out_feature
s depending on 3 classes [168, 11, 7]
(head1): Head(
(fc): Sequential(
(0): AdaptiveConcatPool2d(
(ap): AdaptiveAvgPool2d(output_size=1)
(mp): AdaptiveMaxPool2d(output_size=1)
)
(1): Mish()
(2): Flatten()
(3): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=4096, out_features=512, bias=True)
(6): Mish()
(7): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Dropout(p=0.2, inplace=False)
(9): Linear(in_features=512, out_features=n, bias=True)
Conclusion: Defenetly Imporvement of the model
Thing to try: - Loss without weights
- GeM polling layer
- Full Mish Model
MODEL: se_resnext50_32x4d
BS: 1024
SZ: 128 (1 CH)
VALID: 5 FOLD CV (FOLD=0)
TFMS: transform(get_transforms(do_flip=False,max_warp=0.2, max_zoom=1.1, max_rotate=5,
xtra_tfms=[cutout(n_holes=(10,25), length=(10, 30), p=.5)]), size=(SZ, SZ),
resize_method=ResizeMethod.SQUISH, padding_mode='reflection')
MixUP: True
PRETRAINED: IMAGENET
NORMALIZE: ([0.0692], [0.2051])
LOSS: NORMAL
TRAINING: OPT: Over9000
fit_one_cycle(100, lr, wd=1e-2, pct_start=0.0, div_factor=100)
NOTEBOOK: EXP_200
MODEL WEIGHTS: [EXP_200_RESNEX_1CH_MISH_SIMPLE_ORIG_LOSS_GEM_0_0.pth]
MODEL TRN_LOSS: 1.333434
MODEL VAL_LOSS: 0.171532
ACCURACY ALL : 0.98058
LB SCORE: EXP_200(version 26/27)
grapheme_root | vowel_diacritic | consonant_diacritic | CV | LB |
---|---|---|---|---|
0.969665 | 0.992616 | 0.990397 | 0.980586 | 0.9701 |
Mish
for everything, + 'GeM pooling layer'
n
- on the last linear layers out_feature
s depending on 3 classes [168, 11, 7]
(head1): Head(
(fc): Sequential(
(0): GeM(p=3.0000, eps=1e-06)
(1): Mish()
(2): Flatten()
(3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=2048, out_features=512, bias=True)
(6): Mish()
(7): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Dropout(p=0.2, inplace=False)
(9): Linear(in_features=512, out_features=168, bias=True)
)
Thing to try: - cutmix
Images: I have implemented fastai to work with cutmix
same as 17 JAN 2019 9:40 AM, EXP_200.ipynb
just with cutmix
grapheme_root | vowel_diacritic | consonant_diacritic | CV | LB |
---|---|---|---|---|
0.977921 | 0.990718 | 0.985638 | 0.983230 | 0.950 |
same as 17 JAN 2019 9:40 AM, EXP_200.ipynb
Thing to try: - cutmix, with simple pool layers and no non linearity
SZ = 152 POOL = Averge no Wrap removed squish from dataloader