Skip to content

Commit

Permalink
fix tac_solve (fix #1041) (#1052)
Browse files Browse the repository at this point in the history
  • Loading branch information
fblanqui authored Feb 21, 2024
1 parent 7dab185 commit 4888196
Show file tree
Hide file tree
Showing 5 changed files with 119 additions and 58 deletions.
22 changes: 13 additions & 9 deletions src/core/libMeta.ml
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,11 @@
open Lplib
open Term
open Timed
open Common

(** Logging function for unification. *)
let log = Logger.make 'a' "meta" "metavariables"
let log = log.pp

let meta_counter : int Stdlib.ref = Stdlib.ref (-1)

Expand All @@ -11,12 +16,13 @@ let reset_meta_counter () = Stdlib.(meta_counter := -1)

(** [fresh p ?name a n] creates a fresh metavariable of type [a] and arity [n]
with the optional name [name], and adds it to [p]. *)
let fresh : problem -> term -> int -> meta =
fun p a n ->
let fresh : problem -> term -> int -> meta = fun p a n ->
let m = {meta_key = Stdlib.(incr meta_counter; !meta_counter);
meta_type = ref a; meta_arity = n;
meta_value = ref None } in
p := {!p with metas = MetaSet.add m !p.metas}; m
meta_type = ref a; meta_arity = n; meta_value = ref None } in
if Logger.log_enabled() then log "fresh ?%d" m.meta_key;
p := {!p with metas = MetaSet.add m !p.metas};
if Logger.log_enabled() then log "%a" Print.problem p;
m

(** [fresh_box p a n] is the boxed counterpart of [fresh_meta]. It is
only useful in the rare cases where the type of a metavariable
Expand All @@ -40,8 +46,7 @@ let set : problem -> meta -> tmbinder -> unit = fun p m v ->

(** [make p ctx a] creates a fresh metavariable term of type [a] in the
context [ctx], and adds it to [p]. *)
let make : problem -> ctxt -> term -> term =
fun p ctx a ->
let make : problem -> ctxt -> term -> term = fun p ctx a ->
let a, k = Ctxt.to_prod ctx a in
let m = fresh p a k in
let get_var (x,_,d) = if d = None then Some (mk_Vari x) else None in
Expand All @@ -51,8 +56,7 @@ let make : problem -> ctxt -> term -> term =
a fresh {e boxed} metavariable in {e boxed} context [bctx] of {e
boxed} type [a]. It is the same as [lift (make p c b)] (provided that
[bctx] is boxed [c] and [a] is boxed [b]), but more efficient. *)
let bmake : problem -> bctxt -> tbox -> tbox =
fun p bctx a ->
let bmake : problem -> bctxt -> tbox -> tbox = fun p bctx a ->
let (a, k) = Ctxt.to_prod_box bctx a in
let m = fresh_box p a k in
let get_var (x, _) = _Vari x in
Expand Down
78 changes: 39 additions & 39 deletions src/core/unif.ml
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@ open LibTerm
open Print

(** Logging function for unification. *)
let log_unif = Logger.make 'u' "unif" "unification"
let log_unif = log_unif.pp
let log = Logger.make 'u' "unif" "unification"
let log = log.pp

(** Given a meta [m] of type [Πx1:a1,..,Πxn:an,b], [set_to_prod p m] sets [m]
to a product term of the form [Πy:m1[x1;..;xn],m2[x1;..;xn;y]] with [m1]
Expand All @@ -32,7 +32,7 @@ let set_to_prod : problem -> meta -> unit = fun p m ->
(* result *)
let r = _Prod a b in
if Logger.log_enabled () then
log_unif (red "%a ≔ %a") meta m term (Bindlib.unbox r);
log (red "%a ≔ %a") meta m term (Bindlib.unbox r);
LibMeta.set p m (Bindlib.unbox (Bindlib.bind_mvar vs r))

(** [type_app c a ts] returns [Some u] where [u] is a type of [add_args x ts]
Expand All @@ -46,14 +46,14 @@ let rec type_app : ctxt -> term -> term list -> term option = fun c a ts ->

(** [add_constr p c] adds the constraint [c] into [p.to_solve]. *)
let add_constr : problem -> constr -> unit = fun p c ->
if Logger.log_enabled () then log_unif (mag "add %a") constr c;
if Logger.log_enabled () then log (mag "add %a") constr c;
p := {!p with to_solve = c::!p.to_solve}

(** [try_unif_rules p c s t] tries to simplify the unification problem [c
⊢ s ≡ t] with the user-defined unification rules. *)
let try_unif_rules : problem -> ctxt -> term -> term -> bool =
fun p c s t ->
if Logger.log_enabled () then log_unif "check unif_rules";
if Logger.log_enabled () then log "check unif_rules";
let exception No_match in
let open Unif_rule in
try
Expand Down Expand Up @@ -82,10 +82,10 @@ let try_unif_rules : problem -> ctxt -> term -> term -> bool =
Error.fatal_no_pos "Untypable unification problem."
in
let cs = List.map (fun (t,u) -> sanitise (c,t,u)) (unpack rhs) in
if Logger.log_enabled () then log_unif "rewrites to: %a" constrs cs;
if Logger.log_enabled () then log "rewrites to: %a" constrs cs;
true
with No_match ->
if Logger.log_enabled () then log_unif "found no unif_rule";
if Logger.log_enabled () then log "found no unif_rule";
false

(** [instantiable c m ts u] tells whether, in a problem [m[ts]=u], [m] can
Expand Down Expand Up @@ -115,36 +115,35 @@ let do_type_check = Stdlib.ref true
metavariables of [p]. *)
let instantiate : problem -> ctxt -> meta -> term array -> term -> bool =
fun p c m ts u ->
if Logger.log_enabled () then log_unif "try instantiate";
if Logger.log_enabled () then log "try instantiate";
match instantiation c m ts u with
| Some b when Bindlib.is_closed b ->
let do_instantiate() =
if Logger.log_enabled () then
log_unif (red "%a ≔ %a") meta m term u;
let do_instantiate p =
if Logger.log_enabled () then log (red "%a ≔ %a") meta m term u;
LibMeta.set p m (Bindlib.unbox b);
p := {!p with recompute = true}; true
in
if Stdlib.(!do_type_check) then
begin
if Logger.log_enabled () then log_unif "check typing";
if Logger.log_enabled () then log "check typing";
let typ_mts =
match type_app c !(m.meta_type) (Array.to_list ts) with
| Some a -> a
| None -> assert false
in
if Infer.check_noexn p c u typ_mts <> None then do_instantiate()
else (if Logger.log_enabled () then log_unif "typing failed"; false)
if Infer.check_noexn p c u typ_mts <> None then do_instantiate p
else (if Logger.log_enabled () then log "typing failed"; false)
end
else do_instantiate()
else do_instantiate p
| i ->
if Logger.log_enabled () then
begin
match i with
| None ->
if LibMeta.occurs m c u then log_unif "occur check failed"
else log_unif "arguments are not distinct variables: %a"
if LibMeta.occurs m c u then log "occur check failed"
else log "arguments are not distinct variables: %a"
(Array.pp term "; ") ts
| Some _ -> log_unif "not closed"
| Some _ -> log "not closed"
end;
false

Expand All @@ -155,17 +154,17 @@ let instantiate : problem -> ctxt -> meta -> term array -> term -> bool =
let add_to_unsolved : problem -> ctxt -> term -> term -> unit =
fun p c t1 t2 ->
if Eval.pure_eq_modulo c t1 t2 then
(if Logger.log_enabled () then log_unif "equivalent terms")
(if Logger.log_enabled () then log "equivalent terms")
else if not (try_unif_rules p c t1 t2) then
(if Logger.log_enabled () then log_unif "move to unsolved";
(if Logger.log_enabled () then log "move to unsolved";
p := {!p with unsolved = (c,t1,t2)::!p.unsolved})

(** [decompose p c ts1 ts2] tries to decompose a problem of the form [h ts1 ≡
h ts2] into the problems [t1 ≡ u1; ..; tn ≡ un], assuming that [ts1 =
[t1;..;tn]] and [ts2 = [u1;..;un]]. *)
let decompose : problem -> ctxt -> term list -> term list -> unit =
fun p c ts1 ts2 ->
if Logger.log_enabled () && ts1 <> [] then log_unif "decompose";
if Logger.log_enabled () && ts1 <> [] then log "decompose";
List.iter2 (fun a b -> add_constr p (c,a,b)) ts1 ts2

(** For a problem of the form [h1 ≡ h2] with [h1 = m[ts]], [h2 = Πx:_,_] (or
Expand All @@ -174,7 +173,7 @@ let decompose : problem -> ctxt -> term list -> term list -> unit =
[p]. *)
let imitate_prod : problem -> ctxt -> meta -> term -> term -> unit =
fun p c m h1 h2 ->
if Logger.log_enabled () then log_unif "imitate_prod %a" meta m;
if Logger.log_enabled () then log "imitate_prod %a" meta m;
set_to_prod p m; add_constr p (c,h1,h2)

(** For a problem [m[vs] ≡ s(ts)] in context [c], where [vs] are distinct
Expand All @@ -189,7 +188,7 @@ let imitate_inj :
-> bool =
fun p c m vs us s ts ->
if Logger.log_enabled () then
log_unif "imitate_inj %a ≡ %a" term (add_args (mk_Meta(m,vs)) us)
log "imitate_inj %a ≡ %a" term (add_args (mk_Meta(m,vs)) us)
term (add_args (mk_Symb s) ts);
let exception Cannot_imitate in
try
Expand All @@ -216,7 +215,7 @@ let imitate_inj :
| _ -> raise Cannot_imitate
in build (List.length ts) [] !(s.sym_type)
in
if Logger.log_enabled () then log_unif (red "%a ≔ %a") meta m term t;
if Logger.log_enabled () then log (red "%a ≔ %a") meta m term t;
LibMeta.set p m (binds vars lift t); true
with Cannot_imitate | Invalid_argument _ -> false

Expand All @@ -242,7 +241,7 @@ let imitate_lam_cond : term -> term list -> bool = fun h ts ->
a new metavariable of arity [n+1] and type
[Πx1:a1,..,Πxn:an,Πx:m2[x1,..,xn],TYPE], and do as in the previous case. *)
let imitate_lam : problem -> ctxt -> meta -> unit = fun p c m ->
if Logger.log_enabled () then log_unif "imitate_lam %a" meta m;
if Logger.log_enabled () then log "imitate_lam %a" meta m;
let n = m.meta_arity in
let env, t = Env.of_prod_nth c n !(m.meta_type) in
let of_prod a b =
Expand Down Expand Up @@ -280,19 +279,19 @@ let imitate_lam : problem -> ctxt -> meta -> unit = fun p c m ->
let xu1 = _Abst a (Bindlib.bind_var x u1) in
let v = Bindlib.bind_mvar (Env.vars env) xu1 in
if Logger.log_enabled () then
log_unif (red "%a ≔ %a") meta m term (Bindlib.unbox xu1);
log (red "%a ≔ %a") meta m term (Bindlib.unbox xu1);
LibMeta.set p m (Bindlib.unbox v)

(** [inverse_opt s ts v] returns [Some(t, inverse s v)] if [ts=[t]], [s] is
injective and [inverse s v] does not fail, and [None] otherwise. *)
let inverse_opt : sym -> term list -> term -> (term * term) option =
fun s ts v ->
if Logger.log_enabled () then log_unif "try inverse %a" sym s;
if Logger.log_enabled () then log "try inverse %a" sym s;
try
match ts with
| [t] when is_injective s -> Some (t, Inverse.inverse s v)
| _ -> raise Not_found
with Not_found -> if Logger.log_enabled () then log_unif "failed"; None
with Not_found -> if Logger.log_enabled () then log "failed"; None

(** Exception raised when a constraint is not solvable. *)
exception Unsolvable
Expand All @@ -316,7 +315,7 @@ let inverse : problem -> ctxt -> term -> sym -> term list -> term -> unit =
match unfold t2 with
| Prod _ when is_constant s -> error t1 t2
| _ ->
if Logger.log_enabled () then log_unif "move to unsolved";
if Logger.log_enabled () then log "move to unsolved";
p := {!p with unsolved = (c, t1, t2)::!p.unsolved}

(** [sym_sym_whnf p c t1 s1 ts1 t2 s2 ts2 p] handles the case [s1(ts1) =
Expand All @@ -341,24 +340,25 @@ let sym_sym_whnf :
Otherwise, [p.to_solve] is empty but [p.unsolved] may still contain
constraints that could not be simplified. *)
let solve : problem -> unit = fun p ->
while !p.to_solve <> [] || (!p.recompute && !p.unsolved <> []) do
while !p.to_solve <> [] || (!p.recompute && !p.unsolved <> []) do begin
log "solve %a" problem p;
match !p.to_solve with
| [] ->
if Logger.log_enabled () then log_unif "recompute";
if Logger.log_enabled () then log "recompute";
p := {!p with to_solve = !p.unsolved; unsolved = []; recompute = false}
| (c,t1,t2)::to_solve ->
(*if Logger.log_enabled () then
log_unif "%d constraints" (1 + List.length to_solve);*)
log "%d constraints" (1 + List.length to_solve);*)

(* We remove the first constraint from [p] for not looping. *)
p := {!p with to_solve};

(* We first try without normalizing wrt user-defined rules. *)
let tags = [`NoRw; `NoExpand] in
let t1 = Eval.whnf ~tags c t1 and t2 = Eval.whnf ~tags c t2 in
if Logger.log_enabled () then log_unif (gre "solve %a") constr (c,t1,t2);
if Logger.log_enabled () then log (gre "solve %a") constr (c,t1,t2);
if Eval.pure_eq_modulo ~tags c t1 t2 then
(if Logger.log_enabled () then log_unif "equivalent terms")
(if Logger.log_enabled () then log "equivalent terms")
else
let h1, ts1 = get_args t1 and h2, ts2 = get_args t2 in

Expand All @@ -369,7 +369,7 @@ let solve : problem -> unit = fun p ->
| Prod(a1,b1), Prod(a2,b2)
| Abst(a1,b1), Abst(a2,b2) ->
(* [ts1] and [ts2] must be empty because of typing or normalization. *)
if Logger.log_enabled () then log_unif "decompose";
if Logger.log_enabled () then log "decompose";
add_constr p (c,a1,a2);
let (x,b1,b2) = Bindlib.unbind2 b1 b2 in
let c' = (x,a1,None)::c in
Expand Down Expand Up @@ -414,9 +414,9 @@ let solve : problem -> unit = fun p ->

| _ ->
(* We normalize wrt user-defined rules and try again. *)
if Logger.log_enabled () then log_unif "whnf";
if Logger.log_enabled () then log "whnf";
let t1 = Eval.whnf c t1 and t2 = Eval.whnf c t2 in
if Logger.log_enabled () then log_unif (gre "solve %a") constr (c,t1,t2);
if Logger.log_enabled () then log (gre "solve %a") constr (c,t1,t2);
let h1, ts1 = get_args t1 and h2, ts2 = get_args t2 in

match h1, h2 with
Expand All @@ -426,7 +426,7 @@ let solve : problem -> unit = fun p ->
| Prod(a1,b1), Prod(a2,b2)
| Abst(a1,b1), Abst(a2,b2) ->
(* [ts1] and [ts2] must be empty because of typing or normalization. *)
if Logger.log_enabled () then log_unif "decompose";
if Logger.log_enabled () then log "decompose";
add_constr p (c,a1,a2);
let (x,b1,b2) = Bindlib.unbind2 b1 b2 in
let c' = (x,a1,None)::c in
Expand Down Expand Up @@ -482,7 +482,7 @@ let solve : problem -> unit = fun p ->
| _, Symb s -> inverse p c t2 s ts2 t1

| _ -> add_to_unsolved p c t1 t2
done
end done

(** [solve_noexn ~type_check p] tries to simplify the constraints of [p]. It
returns [false] if it finds a constraint that cannot be
Expand Down
32 changes: 23 additions & 9 deletions src/handle/tactic.ml
Original file line number Diff line number Diff line change
Expand Up @@ -75,24 +75,38 @@ let tac_admit: Sig_state.t -> popt -> proof_state -> goal_typ -> proof_state =
state [ps] and fails if constraints are unsolvable. *)
let tac_solve : popt -> proof_state -> proof_state = fun pos ps ->
if Logger.log_enabled () then log "@[<v>tac_solve@ %a@]" goals ps;
(* convert the proof_state into a problem *)
let gs_typ, gs_unif = List.partition is_typ ps.proof_goals in
let p = new_problem() in
let f ms = function
let add_meta ms = function
| Unif _ -> ms
| Typ gt -> MetaSet.add gt.goal_meta ms
in
p := {!p with metas = List.fold_left f MetaSet.empty gs_typ
p := {!p with metas = List.fold_left add_meta MetaSet.empty gs_typ
; to_solve = List.rev_map get_constr gs_unif};
(* try to solve the problem *)
if not (Unif.solve_noexn p) then
fatal pos "Unification goals are unsatisfiable.";
(* remove in [gs_typ] the goals that have been instantiated, and simplify
the others. *)
let not_instantiated = function
| Typ gt when !(gt.goal_meta.meta_value) <> None -> None
| gt -> Some (Goal.simpl Eval.simplify gt)
(* compute the new list of goals by preserving the order of initial goals
and adding the new goals at the end *)
let non_instantiated = function
| Typ gt -> !(gt.goal_meta.meta_value) = None
| _ -> assert false
in
let gs_typ = List.filter_map not_instantiated gs_typ in
{ps with proof_goals = List.map (fun c -> Unif c) !p.unsolved @ gs_typ}
let gs_typ = List.filter non_instantiated gs_typ in
let is_eq_goal_meta m = function
| Typ gt -> m == gt.goal_meta
| _ -> assert false
in
let add_goal m gs =
if List.exists (is_eq_goal_meta m) gs_typ then gs
else Goal.of_meta m :: gs
in
let proof_goals =
gs_typ @ MetaSet.fold add_goal (!p).metas
(List.map (fun c -> Unif c) (!p).unsolved)
in
{ps with proof_goals}

(** [tac_refine pos ps gt gs p t] refines the typing goal [gt] with [t]. [p]
is the set of metavariables created by the scoping of [t]. *)
Expand Down
43 changes: 43 additions & 0 deletions tests/KO/1041.lp
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
constant symbol Prop : TYPE;
builtin "Prop" ≔ Prop;
injective symbol π : Prop → TYPE; // `p
builtin "P" ≔ π;

constant symbol Set : TYPE;
injective symbol τ : Set → TYPE;
builtin "T" ≔ τ;

constant symbol ⊥ : Prop; // \bot

constant symbol ⇒ : Prop → Prop → Prop; notation ⇒ infix right 5; // =>
rule π ($p ⇒ $q) ↪ π $p → π $q;

symbol ¬ p ≔ p ⇒ ⊥; // ~~ or \neg
notation ¬ prefix 35;

constant symbol ∀ [a] : (τ a → Prop) → Prop; notation ∀ quantifier; // !! or \forall
rule π (∀ $f) ↪ Π x, π ($f x);

injective symbol πᶜ p ≔ π (¬ ¬ p);

flag "print_implicits" on;
flag "print_domains" on;
//flag "print_meta_types" on;

symbol ∀ᶜ [a] p ≔ `∀ x : τ a, ¬ ¬ (p x); notation ∀ᶜ quantifier;

//debug +hiuta;
opaque symbol ∀ᶜᵢ p : (Π x, πᶜ (p x)) → πᶜ (∀ᶜ p) ≔
begin
print;
//debug -hiuta;
assume p Hnnpx Hnnnpx;
apply Hnnnpx;
assume x Hnnp;
apply Hnnpx x;
assume Hnp;
apply Hnnp;
apply Hnp;
end;

print ∀ᶜᵢ;
Loading

0 comments on commit 4888196

Please sign in to comment.