Skip to content

Commit

Permalink
merge
Browse files Browse the repository at this point in the history
  • Loading branch information
dombrovski committed Oct 30, 2018
1 parent 9c36f59 commit 3f1c454
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 12 deletions.
50 changes: 39 additions & 11 deletions pie_inspect.R
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,6 @@ df <- as.tibble(pie_data_proc$df)

df = df %>% as_tibble %>% arrange(ID, block_num, trial)


df<-df[!as.logical(df$forced_choice),]
# value sampled on the first free choice as a function of even/uneven sampling -- should be lower in uneven

# inspect relative value and uncertainty signals
Expand All @@ -29,17 +27,45 @@ df$forced_sampling <- NA
df$forced_sampling[df$even_uneven==0] <- 'uneven'
df$forced_sampling[df$even_uneven==1] <- 'even'

inx<-df[names(df)[grep("samplehx[0-9]",names(df))]]==0
df[names(df)[grep("v_bayes[0-9]",names(df))]][inx]<-NA

# calculate different value flavors

df$v_mean <- rowMeans(df[c('v_bayes1','v_bayes2','v_bayes3', 'v_bayes4',
'v_bayes5','v_bayes6','v_bayes7','v_bayes8')], na.rm = T)
df$v_diff <- df$vbay_selected - df$v_mean

fdf<-df[!as.logical(df$forced_choice),]

ff <- as.tibble(df[(df$trial==5 & df$num_segments==4) | (df$trial==9 & df$num_segments==8),])

# df$logVrel <- log(df$v_l)
# df$logUrel <- log(df$u_l)
# df$logUrel <- log(df$u)
gridExtra::grid.arrange(
ggplot(fdf,aes(trial,v_bayes1,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes2,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes3,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes4,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes5,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes6,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes7,color = num_segments, lty = show_points)) + geom_smooth(),
ggplot(fdf,aes(trial,v_bayes8,color = num_segments, lty = show_points)) + geom_smooth(),
nrow=4)
varyingvars<-names(df)[grep("[1-9]",names(df))]
ldf<-reshape2::melt(fdf, measure.vars = varyingvars)
ldf$type<-gsub("[0-9]*","",ldf$variable)
ldf <- ldf[ldf$type=='v_bayes',]
ggplot(ldf,aes(trial,value, color = variable)) + geom_smooth() + facet_wrap(~num_segments)

# their exploitation is helped by show_points in 8
ggplot(fdf,aes(trial,vbay_selected,color = num_segments, lty = show_points)) + geom_smooth(method = "loess")

ggplot(fdf,aes(trial,v_diff,color = num_segments, lty = show_points)) + geom_smooth(method = "loess")

# log-log value-uncertainty relationship
ggplot(df,aes(v_l,u_l,color = num_segments)) + geom_point() + facet_wrap(~ID)

# linear value-uncertainty relationship
ggplot(df,aes(v_l,u_l,color = num_segments)) + geom_point() + facet_wrap(~ID)
ggplot(df,aes(v_l,u,color = num_segments)) + geom_point() + facet_wrap(~ID)

# do they switch from exploration to exploitation
ggplot(df,aes(trial, selected_prob,color = num_segments, lty = show_points)) + geom_smooth() + facet_wrap(~ID)
Expand All @@ -63,14 +89,16 @@ m3 <- lmer(v_bayes ~ num_segments * show_points + trial + (1|ID), df)
summary(m3)
car::Anova(m3,'3')

m4 <- lmer(u_l ~ num_segments * show_points * trial + (1|ID), df)
m4 <- lmer(u ~ num_segments * show_points * trial + (1|ID), df)
summary(m4)
car::Anova(m4,'3')

ggplot(df,aes(trial, u_l,color = num_segments)) + geom_smooth(method = 'gam') + facet_wrap(~ID)
ggplot(df,aes(trial, 1-u_l,color = num_segments, lty = show_points)) + geom_smooth(method = 'gam')
ggplot(df,aes(trial, u,color = num_segments)) + geom_smooth(method = 'gam') + facet_wrap(~ID)
ggplot(df,aes(trial, 1-u,color = num_segments, lty = show_points)) + geom_smooth(method = 'gam')

ggplot(ff,aes(forced_sampling,samphx_lag,color = show_points, shape = show_points)) + geom_jitter() + facet_wrap(~num_segments)

ggplot(ff,aes(even_uneven,rewhx_lag,color = show_points, shape = show_points)) + geom_jitter() + facet_wrap(~num_segments)
######
# Find the Bob Wilson uncertainty-driven exploration effect
ggplot(ff,aes(forced_sampling,samplehx_selected,color = vbay_selected)) + geom_jitter() + facet_wrap(~num_segments)
ggplot(ff,aes(forced_sampling,vbay_selected,color = show_points)) + geom_jitter() + facet_wrap(~num_segments)

2 changes: 1 addition & 1 deletion pie_utility.R
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ pie_preproc<-function(ss_pie_raw=NULL,filter_freechoice=T,only_firstfree=F,useme
sxw$firstfree[max(sxw$num_segments)+1]<-TRUE
}

sxw$u_l<-1-(sxw$samplehx_selected/(sxw$trial-1))
sxw$u<-1-(sxw$samplehx_selected/(sxw$trial-1))
# for (ix in c(indexsx$variname,"samphx","rewhx")) {
# d<-sxw[,ix]
# sxw[paste0(ix,"_lag")]<-dplyr::lag(d)
Expand Down

0 comments on commit 3f1c454

Please sign in to comment.