Skip to content

Commit

Permalink
Supports RNABERT
Browse files Browse the repository at this point in the history
Signed-off-by: Zhiyuan Chen <[email protected]>
  • Loading branch information
ZhiyuanChen committed Mar 26, 2024
1 parent d352405 commit f603dbc
Show file tree
Hide file tree
Showing 12 changed files with 772 additions and 2 deletions.
4 changes: 2 additions & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,8 @@ repos:
- id: check-merge-conflict
- id: check-vcs-permalinks
- id: check-symlinks
- id: pretty-format-json
files: multimolecule
# - id: pretty-format-json
# files: multimolecule
- id: check-json
- id: check-xml
- id: check-toml
Expand Down
4 changes: 4 additions & 0 deletions multimolecule/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from . import models


__all__ = ["models"]
3 changes: 3 additions & 0 deletions multimolecule/models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .rnabert import RnaBertConfig, RnaBertModel, RnaBertTokenizer

__all__ = ["RnaBertConfig", "RnaBertModel", "RnaBertTokenizer"]
11 changes: 11 additions & 0 deletions multimolecule/models/rnabert/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
from transformers import AutoConfig, AutoTokenizer, AutoModel

from .configuration_rnabert import RnaBertConfig
from .modeling_rnabert import RnaBertModel
from .tokenization_rnabert import RnaBertTokenizer

__all__ = ["RnaBertConfig", "RnaBertModel", "RnaBertTokenizer"]

AutoConfig.register("rnabert", RnaBertConfig)
AutoModel.register(RnaBertConfig, RnaBertModel)
AutoTokenizer.register(RnaBertConfig, RnaBertTokenizer)
25 changes: 25 additions & 0 deletions multimolecule/models/rnabert/config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
{
"architectures": ["RnaBertModel"],
"attention_probs_dropout_prob": 0.0,
"emb_layer_norm_before": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"hidden_size": 120,
"initializer_range": 0.02,
"intermediate_size": 40,
"layer_norm_eps": 1e-12,
"mask_token_id": null,
"max_position_embeddings": 440,
"model_type": "rnabert",
"num_attention_heads": 12,
"num_hidden_layers": 6,
"position_embedding_type": "absolute",
"ss_size": 8,
"token_dropout": false,
"torch_dtype": "float32",
"transformers_version": "4.39.1",
"type_vocab_size": 2,
"use_cache": true,
"vocab_list": ["<pad>", "<mask>", "A", "T", "G", "C"],
"vocab_size": 6
}
105 changes: 105 additions & 0 deletions multimolecule/models/rnabert/configuration_rnabert.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


DEFAULT_VOCAB_LIST = ["<pad>", "<mask>", "A", "T", "G", "C"]


class RnaBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RnaBertModel`]. It is used to instantiate a
RnaBert model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the RnaBert
[mana438/RNABERT](https://github.com/mana438/RNABERT/blob/master/RNA_bert_config.json) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the RnaBert model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RnaBertModel`].
mask_token_id (`int`, *optional*):
The index of the mask token in the vocabulary. This must be included in the config because of the
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
pad_token_id (`int`, *optional*):
The index of the padding token in the vocabulary. This must be included in the config because certain parts
of the RnaBert code use this instead of the attention mask.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
emb_layer_norm_before (`bool`, *optional*):
Whether to apply layer normalization after embeddings but before the main stem of the network.
token_dropout (`bool`, defaults to `False`):
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
Examples:
```python
>>> from transformers import RnaBertModel, RnaBertConfig
>>> # Initializing a RnaBert style configuration >>> configuration = RnaBertConfig()
>>> # Initializing a model from the configuration >>> model = RnaBertModel(configuration)
>>> # Accessing the model configuration >>> configuration = model.config
```"""

model_type = "rnabert"

def __init__(
self,
vocab_size=None,
mask_token_id=None,
pad_token_id=None,
hidden_size=None,
multiple=None,
num_hidden_layers=6,
num_attention_heads=12,
intermediate_size=40,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=440,
initializer_range=0.02,
layer_norm_eps=1e-12,
emb_layer_norm_before=None,
token_dropout=False,
vocab_list=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)

self.vocab_size = vocab_size
if hidden_size is None:
hidden_size = num_attention_heads * multiple if multiple is not None else 120
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
self.vocab_list = vocab_list if vocab_list is not None else DEFAULT_VOCAB_LIST
35 changes: 35 additions & 0 deletions multimolecule/models/rnabert/convert_checkpoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import sys
from typing import Optional

import chanfig
import torch

from . import RnaBertConfig, RnaBertModel
from .configuration_rnabert import DEFAULT_VOCAB_LIST


def convert_checkpoint(checkpoint_path: str, output_path: Optional[str] = None):
if output_path is None:
output_path = "rnabert"
config = RnaBertConfig.from_dict(chanfig.load("config.json"))
config.vocab_list = DEFAULT_VOCAB_LIST
ckpt = torch.load(checkpoint_path)
bert_state_dict = ckpt
state_dict = {}

model = RnaBertModel(config)

for key, value in bert_state_dict.items():
if key.startswith("module.cls"):
continue
key = key[12:]
key = key.replace("gamma", "weight")
key = key.replace("beta", "bias")
state_dict[key] = value

model.load_state_dict(state_dict)
model.save_pretrained(output_path)


if __name__ == "__main__":
convert_checkpoint(sys.argv[1], sys.argv[2] if len(sys.argv) > 2 else None)
Loading

0 comments on commit f603dbc

Please sign in to comment.