-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Zhiyuan Chen <[email protected]>
- Loading branch information
1 parent
d352405
commit f603dbc
Showing
12 changed files
with
772 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from . import models | ||
|
||
|
||
__all__ = ["models"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .rnabert import RnaBertConfig, RnaBertModel, RnaBertTokenizer | ||
|
||
__all__ = ["RnaBertConfig", "RnaBertModel", "RnaBertTokenizer"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
from transformers import AutoConfig, AutoTokenizer, AutoModel | ||
|
||
from .configuration_rnabert import RnaBertConfig | ||
from .modeling_rnabert import RnaBertModel | ||
from .tokenization_rnabert import RnaBertTokenizer | ||
|
||
__all__ = ["RnaBertConfig", "RnaBertModel", "RnaBertTokenizer"] | ||
|
||
AutoConfig.register("rnabert", RnaBertConfig) | ||
AutoModel.register(RnaBertConfig, RnaBertModel) | ||
AutoTokenizer.register(RnaBertConfig, RnaBertTokenizer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
{ | ||
"architectures": ["RnaBertModel"], | ||
"attention_probs_dropout_prob": 0.0, | ||
"emb_layer_norm_before": null, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.0, | ||
"hidden_size": 120, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 40, | ||
"layer_norm_eps": 1e-12, | ||
"mask_token_id": null, | ||
"max_position_embeddings": 440, | ||
"model_type": "rnabert", | ||
"num_attention_heads": 12, | ||
"num_hidden_layers": 6, | ||
"position_embedding_type": "absolute", | ||
"ss_size": 8, | ||
"token_dropout": false, | ||
"torch_dtype": "float32", | ||
"transformers_version": "4.39.1", | ||
"type_vocab_size": 2, | ||
"use_cache": true, | ||
"vocab_list": ["<pad>", "<mask>", "A", "T", "G", "C"], | ||
"vocab_size": 6 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
DEFAULT_VOCAB_LIST = ["<pad>", "<mask>", "A", "T", "G", "C"] | ||
|
||
|
||
class RnaBertConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`RnaBertModel`]. It is used to instantiate a | ||
RnaBert model according to the specified arguments, defining the model architecture. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of the RnaBert | ||
[mana438/RNABERT](https://github.com/mana438/RNABERT/blob/master/RNA_bert_config.json) architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*): | ||
Vocabulary size of the RnaBert model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`RnaBertModel`]. | ||
mask_token_id (`int`, *optional*): | ||
The index of the mask token in the vocabulary. This must be included in the config because of the | ||
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. | ||
pad_token_id (`int`, *optional*): | ||
The index of the padding token in the vocabulary. This must be included in the config because certain parts | ||
of the RnaBert code use this instead of the attention mask. | ||
hidden_size (`int`, *optional*, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, *optional*, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, *optional*, defaults to 3072): | ||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | ||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, *optional*, defaults to 1026): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
emb_layer_norm_before (`bool`, *optional*): | ||
Whether to apply layer normalization after embeddings but before the main stem of the network. | ||
token_dropout (`bool`, defaults to `False`): | ||
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. | ||
Examples: | ||
```python | ||
>>> from transformers import RnaBertModel, RnaBertConfig | ||
>>> # Initializing a RnaBert style configuration >>> configuration = RnaBertConfig() | ||
>>> # Initializing a model from the configuration >>> model = RnaBertModel(configuration) | ||
>>> # Accessing the model configuration >>> configuration = model.config | ||
```""" | ||
|
||
model_type = "rnabert" | ||
|
||
def __init__( | ||
self, | ||
vocab_size=None, | ||
mask_token_id=None, | ||
pad_token_id=None, | ||
hidden_size=None, | ||
multiple=None, | ||
num_hidden_layers=6, | ||
num_attention_heads=12, | ||
intermediate_size=40, | ||
hidden_dropout_prob=0.0, | ||
attention_probs_dropout_prob=0.0, | ||
max_position_embeddings=440, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-12, | ||
emb_layer_norm_before=None, | ||
token_dropout=False, | ||
vocab_list=None, | ||
**kwargs, | ||
): | ||
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) | ||
|
||
self.vocab_size = vocab_size | ||
if hidden_size is None: | ||
hidden_size = num_attention_heads * multiple if multiple is not None else 120 | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.intermediate_size = intermediate_size | ||
self.hidden_dropout_prob = hidden_dropout_prob | ||
self.attention_probs_dropout_prob = attention_probs_dropout_prob | ||
self.max_position_embeddings = max_position_embeddings | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.emb_layer_norm_before = emb_layer_norm_before | ||
self.token_dropout = token_dropout | ||
self.vocab_list = vocab_list if vocab_list is not None else DEFAULT_VOCAB_LIST |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import sys | ||
from typing import Optional | ||
|
||
import chanfig | ||
import torch | ||
|
||
from . import RnaBertConfig, RnaBertModel | ||
from .configuration_rnabert import DEFAULT_VOCAB_LIST | ||
|
||
|
||
def convert_checkpoint(checkpoint_path: str, output_path: Optional[str] = None): | ||
if output_path is None: | ||
output_path = "rnabert" | ||
config = RnaBertConfig.from_dict(chanfig.load("config.json")) | ||
config.vocab_list = DEFAULT_VOCAB_LIST | ||
ckpt = torch.load(checkpoint_path) | ||
bert_state_dict = ckpt | ||
state_dict = {} | ||
|
||
model = RnaBertModel(config) | ||
|
||
for key, value in bert_state_dict.items(): | ||
if key.startswith("module.cls"): | ||
continue | ||
key = key[12:] | ||
key = key.replace("gamma", "weight") | ||
key = key.replace("beta", "bias") | ||
state_dict[key] = value | ||
|
||
model.load_state_dict(state_dict) | ||
model.save_pretrained(output_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
convert_checkpoint(sys.argv[1], sys.argv[2] if len(sys.argv) > 2 else None) |
Oops, something went wrong.