Skip to content

Commit

Permalink
add support of RnaMsm
Browse files Browse the repository at this point in the history
Signed-off-by: Zhiyuan Chen <[email protected]>
  • Loading branch information
ZhiyuanChen committed Apr 15, 2024
1 parent b9353b3 commit 6353c3d
Show file tree
Hide file tree
Showing 7 changed files with 1,429 additions and 2 deletions.
14 changes: 13 additions & 1 deletion multimolecule/models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,17 @@
from ..tokenizers.rna import RnaTokenizer
from .rnabert import (
RnaBertConfig,
RnaBertForMaskedLM,
RnaBertForSequenceClassification,
RnaBertForTokenClassification,
RnaBertModel,
RnaTokenizer,
)
from .rnamsm import (
RnaMsmConfig,
RnaMsmForMaskedLM,
RnaMsmForSequenceClassification,
RnaMsmForTokenClassification,
RnaMsmModel,
)

__all__ = [
Expand All @@ -13,5 +20,10 @@
"RnaBertForMaskedLM",
"RnaBertForSequenceClassification",
"RnaBertForTokenClassification",
"RnaMsmConfig",
"RnaMsmModel",
"RnaMsmForMaskedLM",
"RnaMsmForSequenceClassification",
"RnaMsmForTokenClassification",
"RnaTokenizer",
]
1 change: 0 additions & 1 deletion multimolecule/models/rnabert/modeling_rnabert.py
Original file line number Diff line number Diff line change
Expand Up @@ -320,7 +320,6 @@ def forward(

layer_outputs = layer(hidden_states, attention_mask=attention_mask, output_attentions=output_attentions)
hidden_states = layer_outputs[0]

if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],) # type: ignore

Expand Down
36 changes: 36 additions & 0 deletions multimolecule/models/rnamsm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
from transformers import (
AutoConfig,
AutoModel,
AutoModelForMaskedLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
)

from multimolecule.tokenizers.rna import RnaTokenizer

from .configuration_rnamsm import RnaMsmConfig
from .modeling_rnamsm import (
RnaMsmForMaskedLM,
RnaMsmForSequenceClassification,
RnaMsmForTokenClassification,
RnaMsmModel,
)

__all__ = [
"RnaMsmConfig",
"RnaMsmModel",
"RnaTokenizer",
"RnaMsmForMaskedLM",
"RnaMsmForSequenceClassification",
"RnaMsmForTokenClassification",
]

AutoConfig.register("rnamsm", RnaMsmConfig)
AutoModel.register(RnaMsmConfig, RnaMsmModel)
AutoModelForMaskedLM.register(RnaMsmConfig, RnaMsmForMaskedLM)
AutoModelForSequenceClassification.register(RnaMsmConfig, RnaMsmForSequenceClassification)
AutoModelForTokenClassification.register(RnaMsmConfig, RnaMsmForTokenClassification)
AutoModelWithLMHead.register(RnaMsmConfig, RnaMsmForTokenClassification)
AutoTokenizer.register(RnaMsmConfig, RnaTokenizer)
110 changes: 110 additions & 0 deletions multimolecule/models/rnamsm/configuration_rnamsm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


class RnaMsmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RnaMsmModel`]. It is used to instantiate a
RnaMsm model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the RnaMsm
[yikunpku/RNA-MSM](https://github.com/yikunpku/RNA-MSM) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the RnaMsm model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RnaMsmModel`].
mask_token_id (`int`, *optional*):
The index of the mask token in the vocabulary. This must be included in the config because of the
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
pad_token_id (`int`, *optional*):
The index of the padding token in the vocabulary. This must be included in the config because certain parts
of the RnaMsm code use this instead of the attention mask.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
Examples:
```python
>>> from multimolecule import RnaMsmModel, RnaMsmConfig
>>> # Initializing a RnaMsm style configuration >>> configuration = RnaMsmConfig()
>>> # Initializing a model from the configuration >>> model = RnaMsmModel(configuration)
>>> # Accessing the model configuration >>> configuration = model.config
```
"""

model_type = "rnamsm"

def __init__(
self,
vocab_size=25,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=1,
position_embedding_type="absolute",
use_cache=True,
head_dropout=None,
head_transform=None,
head_act=None,
max_tokens_per_msa=2**14,
attention_type="standard",
embed_positions_msa=True,
attention_bias=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)

self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.head_dropout = head_dropout
self.head_transform = head_transform
self.head_act = head_act
self.max_tokens_per_msa = max_tokens_per_msa
self.attention_type = attention_type
self.embed_positions_msa = embed_positions_msa
self.attention_bias = attention_bias
113 changes: 113 additions & 0 deletions multimolecule/models/rnamsm/convert_checkpoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
import os
from typing import Optional

import chanfig
import torch
from torch import nn

from multimolecule.models import RnaMsmConfig as Config
from multimolecule.models import RnaMsmForMaskedLM as Model
from multimolecule.tokenizers.rna.utils import get_special_tokens_map, get_tokenizer_config, get_vocab_list

try:
from huggingface_hub import HfApi
except ImportError:
HfApi = None


torch.manual_seed(1013)

CONFIG = {
"architectures": ["RnaMsmModel"],
"attention_dropout": 0.1,
"hidden_act": "gelu",
"hidden_dropout": 0.1,
"hidden_size": 768,
"intermediate_size": 3072,
"max_position_embeddings": 1024,
"num_attention_heads": 12,
"num_hidden_layers": 10,
"vocab_size": 25,
"num_labels": 1,
"pad_token_id": 0,
"embed_positions_msa": True,
}

original_vocab_list = ["<cls>", "<pad>", "<eos>", "<unk>", "A", "G", "C", "U", "X", "N", "-", "<mask>"]
vocab_list = get_vocab_list()


def _convert_checkpoint(config, original_state_dict):
state_dict = {}
for key, value in original_state_dict.items():
key = key.replace("layers", "rnamsm.encoder.layer")
key = key.replace("msa_position_embedding", "rnamsm.embeddings.msa_embeddings")
key = key.replace("embed_tokens", "rnamsm.embeddings.word_embeddings")
key = key.replace("embed_positions", "rnamsm.embeddings.position_embeddings")
key = key.replace("emb_layer_norm_before", "rnamsm.embeddings.layer_norm")
key = key.replace("emb_layer_norm_after", "rnamsm.encoder.layer_norm")
key = key.replace("regression", "decoder")
key = key.replace("lm_head.dense", "lm_head.transform.dense")
key = key.replace("lm_head.layer_norm", "lm_head.transform.layer_norm")
state_dict[key] = value

word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
word_embed_weight = word_embed.weight.data
predictions_bias = torch.zeros(config.vocab_size)
# nn.init.normal_(pos_embed.weight, std=0.02)
for original_index, original_token in enumerate(original_vocab_list):
new_index = vocab_list.index(original_token)
word_embed_weight[new_index] = state_dict["rnamsm.embeddings.word_embeddings.weight"][original_index]
predictions_bias[new_index] = state_dict["lm_head.bias"][original_index]
state_dict["rnamsm.embeddings.word_embeddings.weight"] = word_embed_weight
state_dict["lm_head.decoder.weight"] = word_embed.weight.data
state_dict["lm_head.decoder.bias"] = state_dict["lm_head.bias"] = predictions_bias
del state_dict["lm_head.weight"]
return state_dict


def convert_checkpoint(convert_config):
config = Config.from_dict(chanfig.FlatDict(CONFIG))
config.vocab_size = len(vocab_list)
config.head_transform = "nonlinear"

model = Model(config)

ckpt = torch.load(convert_config.checkpoint_path, map_location=torch.device("cpu"))
state_dict = _convert_checkpoint(config, ckpt)

model.load_state_dict(state_dict)
model.save_pretrained(convert_config.output_path, safe_serialization=True)
model.save_pretrained(convert_config.output_path, safe_serialization=False)
chanfig.NestedDict(get_special_tokens_map()).json(
os.path.join(convert_config.output_path, "special_tokens_map.json")
)
chanfig.NestedDict(get_tokenizer_config()).json(os.path.join(convert_config.output_path, "tokenizer_config.json"))

if convert_config.push_to_hub:
if HfApi is None:
raise ImportError("Please install huggingface_hub to push to the hub.")
api = HfApi()
api.create_repo(
convert_config.repo_id,
token=convert_config.token,
exist_ok=True,
)
api.upload_folder(
repo_id=convert_config.repo_id, folder_path=convert_config.output_path, token=convert_config.token
)


@chanfig.configclass
class ConvertConfig:
checkpoint_path: str
output_path: str = Config.model_type
push_to_hub: bool = False
repo_id: str = f"multimolecule/{output_path}"
token: Optional[str] = None


if __name__ == "__main__":
config = ConvertConfig()
config.parse() # type: ignore[attr-defined]
convert_checkpoint(config)
Loading

0 comments on commit 6353c3d

Please sign in to comment.