-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add type hints for RnaTokenizer rename tokenizers.rna.config -> tokenizers.rna.utils point <bos> token to <cls> token
- Loading branch information
1 parent
9935bcd
commit 18503fa
Showing
4 changed files
with
245 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
from typing import Optional, Tuple, Union | ||
|
||
import torch | ||
from chanfig import ConfigRegistry | ||
from torch import nn | ||
from torch.nn import functional as F | ||
from transformers.activations import ACT2FN | ||
from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput | ||
|
||
|
||
class MaskedLMHead(nn.Module): | ||
"""Head for masked language modeling.""" | ||
|
||
def __init__(self, config): | ||
super().__init__() | ||
if "proj_head_mode" not in dir(config) or config.proj_head_mode is None: | ||
config.proj_head_mode = "none" | ||
self.transform = PredictionHeadTransform.build(config) | ||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | ||
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | ||
self.decoder.bias = self.bias | ||
|
||
def forward( | ||
self, | ||
input_ids: Optional[torch.Tensor] = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
token_type_ids: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.Tensor] = None, | ||
head_mask: Optional[torch.Tensor] = None, | ||
inputs_embeds: Optional[torch.Tensor] = None, | ||
encoder_hidden_states: Optional[torch.Tensor] = None, | ||
encoder_attention_mask: Optional[torch.Tensor] = None, | ||
labels: Optional[torch.Tensor] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: | ||
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
outputs = self.bert( | ||
input_ids, | ||
attention_mask=attention_mask, | ||
token_type_ids=token_type_ids, | ||
position_ids=position_ids, | ||
head_mask=head_mask, | ||
inputs_embeds=inputs_embeds, | ||
encoder_hidden_states=encoder_hidden_states, | ||
encoder_attention_mask=encoder_attention_mask, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
) | ||
|
||
sequence_output = outputs[0] | ||
x = self.transform(sequence_output) | ||
prediction_scores = self.decoder(x) | ||
|
||
masked_lm_loss = None | ||
if labels is not None: | ||
masked_lm_loss = F.cross_entropy(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | ||
|
||
if not return_dict: | ||
output = (prediction_scores,) + outputs[2:] | ||
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | ||
|
||
return MaskedLMOutput( | ||
loss=masked_lm_loss, | ||
logits=prediction_scores, | ||
hidden_states=outputs.hidden_states, | ||
attentions=outputs.attentions, | ||
) | ||
|
||
|
||
class SequenceClassificationHead(nn.Module): | ||
"""Head for sequence-level classification tasks.""" | ||
|
||
num_labels: int | ||
|
||
def __init__(self, config): | ||
super().__init__() | ||
if "proj_head_mode" not in dir(config) or config.proj_head_mode is None: | ||
config.proj_head_mode = "none" | ||
self.num_labels = config.num_labels | ||
self.transform = PredictionHeadTransform.build(config) | ||
classifier_dropout = ( | ||
config.classifier_dropout | ||
if "classifier_dropout" in dir(config) and config.classifier_dropout is not None | ||
else config.hidden_dropout_prob | ||
) | ||
self.dropout = nn.Dropout(classifier_dropout) | ||
self.decoder = nn.Linear(config.hidden_size, self.num_labels, bias=False) | ||
|
||
def forward( | ||
self, outputs, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None | ||
) -> Union[Tuple, SequenceClassifierOutput]: | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
sequence_output = outputs.last_hidden_state if return_dict else outputs[0] | ||
x = self.dropout(sequence_output) | ||
x = self.transform(x) | ||
logits = self.decoder(x) | ||
|
||
loss = None | ||
if labels is not None: | ||
if self.config.problem_type is None: | ||
if self.num_labels == 1: | ||
self.config.problem_type = "regression" | ||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | ||
self.config.problem_type = "single_label_classification" | ||
else: | ||
self.config.problem_type = "multi_label_classification" | ||
if self.config.problem_type == "regression": | ||
loss = ( | ||
F.mse_loss(logits.squeeze(), labels.squeeze()) | ||
if self.num_labels == 1 | ||
else F.mse_loss(logits, labels) | ||
) | ||
elif self.config.problem_type == "single_label_classification": | ||
loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) | ||
elif self.config.problem_type == "multi_label_classification": | ||
loss = F.binary_cross_entropy_with_logits(logits, labels) | ||
if not return_dict: | ||
output = (logits,) + outputs[2:] | ||
return ((loss,) + output) if loss is not None else output | ||
|
||
return SequenceClassifierOutput( | ||
loss=loss, | ||
logits=logits, | ||
hidden_states=outputs.hidden_states, | ||
attentions=outputs.attentions, | ||
) | ||
|
||
|
||
class TokenClassificationHead(nn.Module): | ||
"""Head for token-level classification tasks.""" | ||
|
||
num_labels: int | ||
|
||
def __init__(self, config): | ||
if "proj_head_mode" not in dir(config) or config.proj_head_mode is None: | ||
config.proj_head_mode = "none" | ||
super().__init__() | ||
self.num_labels = config.num_labels | ||
self.transform = PredictionHeadTransform.build(config) | ||
classifier_dropout = ( | ||
config.classifier_dropout | ||
if "classifier_dropout" in dir(config) and config.classifier_dropout is not None | ||
else config.hidden_dropout_prob | ||
) | ||
self.dropout = nn.Dropout(classifier_dropout) | ||
self.decoder = nn.Linear(config.hidden_size, self.num_labels, bias=False) | ||
|
||
def forward( | ||
self, outputs, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None | ||
) -> Union[Tuple, TokenClassifierOutput]: | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
token_output = outputs.pooled_output if return_dict else outputs[1] | ||
x = self.dropout(token_output) | ||
x = self.transform(x) | ||
logits = self.decoder(x) | ||
|
||
loss = None | ||
if labels is not None: | ||
if self.config.problem_type is None: | ||
if self.num_labels == 1: | ||
self.config.problem_type = "regression" | ||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | ||
self.config.problem_type = "single_label_classification" | ||
else: | ||
self.config.problem_type = "multi_label_classification" | ||
if self.config.problem_type == "regression": | ||
loss = ( | ||
F.mse_loss(logits.squeeze(), labels.squeeze()) | ||
if self.num_labels == 1 | ||
else F.mse_loss(logits, labels) | ||
) | ||
elif self.config.problem_type == "single_label_classification": | ||
loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) | ||
elif self.config.problem_type == "multi_label_classification": | ||
loss = F.binary_cross_entropy_with_logits(logits, labels) | ||
if not return_dict: | ||
output = (logits,) + outputs[2:] | ||
return ((loss,) + output) if loss is not None else output | ||
|
||
return TokenClassifierOutput( | ||
loss=loss, | ||
logits=logits, | ||
hidden_states=outputs.hidden_states, | ||
attentions=outputs.attentions, | ||
) | ||
|
||
|
||
PredictionHeadTransform = ConfigRegistry(key="proj_head_mode") | ||
|
||
|
||
@PredictionHeadTransform.register("nonlinear") | ||
class NonLinearTransform(nn.Module): | ||
def __init__(self, config): | ||
super().__init__() | ||
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | ||
if isinstance(config.hidden_act, str): | ||
self.transform_act_fn = ACT2FN[config.hidden_act] | ||
else: | ||
self.transform_act_fn = config.hidden_act | ||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | ||
|
||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | ||
hidden_states = self.dense(hidden_states) | ||
hidden_states = self.transform_act_fn(hidden_states) | ||
hidden_states = self.LayerNorm(hidden_states) | ||
return hidden_states | ||
|
||
|
||
@PredictionHeadTransform.register("linear") | ||
class LinearTransform(nn.Module): | ||
def __init__(self, config): | ||
super().__init__() | ||
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) | ||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | ||
|
||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | ||
hidden_states = self.dense(hidden_states) | ||
hidden_states = self.LayerNorm(hidden_states) | ||
return hidden_states | ||
|
||
|
||
@PredictionHeadTransform.register("none") | ||
class IdentityTransform(nn.Identity): | ||
def __init__(self, config): | ||
super().__init__() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.